Transition metal oxides-MXene nanocomposite: The next frontier in supercapacitors

$40.00

Transition metal oxides-MXene nanocomposite: The next frontier in supercapacitors

Jayachandran Madhavan, Pavithra Karthikesan, Harshini Sharan, Alagiri Mani

The steady depletion of non-renewable energy sources along with global warming, has emphasized environment friendly energy systems worldwide. Consequently, there has been a significant increase in demand for efficient energy storage devices, particularly for highly efficient energy storage devices such as supercapacitors and secondary batteries. Comparing with energy storage devices supercapacitor possess a very high-power density, a decent energy density and have an excellent cyclic stability. However, their limited energy density restricts them from being integrated with our daily energy needs. Electrode material based on transition metal oxide (TMO) are particularly intriguing due to their exceptional blend of structural, mechanical, electrical, and electrochemical capabilities. TMO are promising electrode materials for supercapacitors owing to its high capacitance and energy density attributed to rich redox chemistry, as well as their high reversibility, rapid charge-discharge operations, minimal expense owing to availability, and ecological sustainability. However, the significant obstacles that need to be surmounted are inadequate electrical conductivity, rate capability, poor cycle life, and low power density. To overcome these hindrances nanocomposite of TMO with 2D layered materials such as MXenes which provides high electronic conductivity and large surface area for better activation of TMO to enhance the charge storage capabilities. This chapter systematically aims on the most recent developments in MXene-TMO heterostructure electrode materials for supercapacitors and highlights their merits.

Keywords
MXene, Transition Metal Oxides, Two-Dimensional Materials, Supercapacitors, Energy Storage

Published online 10/20/2024, 28 pages

Citation: Jayachandran Madhavan, Pavithra Karthikesan, Harshini Sharan, Alagiri Mani, Transition metal oxides-MXene nanocomposite: The next frontier in supercapacitors, Materials Research Foundations, Vol. 170, pp 117-144, 2024

DOI: https://doi.org/10.21741/9781644903292-6

Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications

References
[1] R.J. Kuhns, G.H. Shaw, Navigating the Energy Maze, Springer International Publishing, Cham, 2018. https://doi.org/10.1007/978-3-319-22783-2.
[2] S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nature Mater 16 (2017) 16–22. https://doi.org/10.1038/nmat4834.
[3] S. Singh, S. Jain, V. Ps, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Hydrogen: A sustainable fuel for future of the transport sector, Renewable and Sustainable Energy Reviews 51 (2015) 623–633. https://doi.org/10.1016/j.rser.2015.06.040.
[4] M. Allen, P. Antwi-Agyei, F. Aragon-Durand, M. Babiker, P. Bertoldi, M. Bind, S. Brown, M. Buckeridge, I. Camilloni, A. Cartwright, W. Cramer, P. Dasgupta, A. Diedhiou, R. Djalante, W. Dong, K.L. Ebi, F. Engelbrecht, S. Fifita, J. Ford, S. Fuß, B. Hayward, J.-C. Hourcade, V. Ginzburg, J. Guiot, C. Handa, Y. Hijioka, S. Humphreys, M. Kainuma, J. Kala, M. Kanninen, H. Kheshgi, S. Kobayashi, E. Kriegler, D. Ley, D. Liverman, N. Mahowald, R. Mechler, S. Mehrotra, Y. Mulugetta, L. Mundaca, P. Newman, C. Okereke, A. Payne, R. Perez, P.F. Pinho, A. Revokatova, K. Riahi, S. Schultz, R. Seferian, S. Seneviratne, L. Steg, A.G. Rogriguez, T. Sugiyama, A. Thonas, M.V. Vilarino, M. Wairiu, R. Warren, G. Zhou, K. Zickfeld, Technical Summary: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, (2019). https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf.
[5] U. Sohail, E. Pervaiz, M. Ali, R. Khosa, A. Shakoor, U. Abdullah, Role of tungsten carbide (WC) and its hybrids in electrochemical water splitting application- A comprehensive review, FlatChem 35 (2022) 100404. https://doi.org/10.1016/j.flatc.2022.100404.
[6] N.Z. Muradov, T.N. Veziroğlu, “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, International Journal of Hydrogen Energy 33 (2008) 6804–6839. https://doi.org/10.1016/j.ijhydene.2008.08.054.
[7] A.H. Fathima, K. Palanisamy, Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems, in: Energy Management of Distributed Generation Systems, IntechOpen, 2016. https://doi.org/10.5772/62766.
[8] M. Yekini Suberu, M. Wazir Mustafa, N. Bashir, Energy storage systems for renewable energy power sector integration and mitigation of intermittency, Renewable and Sustainable Energy Reviews 35 (2014) 499–514. https://doi.org/10.1016/j.rser.2014.04.009.
[9] A.H. Fathima, K. Palanisamy, 8 – Renewable systems and energy storages for hybrid systems, in: A.H. Fathima, N. Prabaharan, K. Palanisamy, A. Kalam, S. Mekhilef, Jackson.J. Justo (Eds.), Hybrid-Renewable Energy Systems in Microgrids, Woodhead Publishing, 2018: pp. 147–164. https://doi.org/10.1016/B978-0-08-102493-5.00008-X.
[10] M.E. Amiryar, K.R. Pullen, A Review of Flywheel Energy Storage System Technologies and Their Applications, Applied Sciences 7 (2017) 286. https://doi.org/10.3390/app7030286.
[11] M. Javaheri, A. Shafiei Ghazani, Energy and exergy analysis of a novel advanced adiabatic compressed air energy storage hybridized with reverse osmosis system, Journal of Energy Storage 73 (2023) 109250. https://doi.org/10.1016/j.est.2023.109250.
[12] C. de M. Altea, J.I. Yanagihara, Energy, exergy and environmental impacts analyses of Pumped Hydro Storage (PHS) and Hydrogen (H2) energy storage processes, Journal of Energy Storage 76 (2024) 109713. https://doi.org/10.1016/j.est.2023.109713.
[13] R.J. Brodd, SECONDARY BATTERIES | Overview, in: J. Garche (Ed.), Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009: pp. 254–261. https://doi.org/10.1016/B978-044452745-5.00125-8.
[14] N. Vangapally, T.R. Penki, Y. Elias, S. Muduli, S. Maddukuri, S. Luski, D. Aurbach, S.K. Martha, Lead-acid batteries and lead–carbon hybrid systems: A review, Journal of Power Sources 579 (2023) 233312. https://doi.org/10.1016/j.jpowsour.2023.233312.
[15] J. Conzen, S. Lakshmipathy, A. Kapahi, S. Kraft, M. DiDomizio, Lithium ion battery energy storage systems (BESS) hazards, Journal of Loss Prevention in the Process Industries 81 (2023) 104932. https://doi.org/10.1016/j.jlp.2022.104932.
[16] J. Ferrari, Chapter 3 – Energy storage and conversion, in: J. Ferrari (Ed.), Electric Utility Resource Planning, Elsevier, 2021: pp. 73–107. https://doi.org/10.1016/B978-0-12-819873-5.00003-4.
[17] M.A. Scibioh, B. Viswanathan, Chapter 2 – Fundamentals and energy storage mechanisms—overview, in: M.A. Scibioh, B. Viswanathan (Eds.), Materials for Supercapacitor Applications, Elsevier, 2020: pp. 15–33. https://doi.org/10.1016/B978-0-12-819858-2.00002-0.
[18] M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, S. Buniran, Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials, NANO 07 (2012) 1230002. https://doi.org/10.1142/S1793292012300022.
[19] A. Mani, K.Z. Kamali, A. Pandikumar, Y.S. Lim, H.N. Lim, N.M. Huang, Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive Material for High Performance Supercapacitors, in: Graphene Materials, John Wiley & Sons, Ltd, 2015: pp. 225–244. https://doi.org/10.1002/9781119131816.ch7.
[20] A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage – A review, Journal of Energy Storage 25 (2019) 100852. https://doi.org/10.1016/j.est.2019.100852.
[21] Md.Y. Bhat, S.A. Hashmi, M. Khan, D. Choi, A. Qurashi, Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications, Journal of Energy Storage 58 (2023) 106104. https://doi.org/10.1016/j.est.2022.106104.
[22] F. Ahmad, A. Shahzad, M. Danish, M. Fatima, M. Adnan, S. Atiq, M. Asim, M.A. Khan, Q.U. Ain, R. Perveen, Recent developments in transition metal oxide-based electrode composites for supercapacitor applications, Journal of Energy Storage 81 (2024) 110430. https://doi.org/10.1016/j.est.2024.110430.
[23] H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, X. He, Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries, Energy Storage Materials 33 (2020) 188–215. https://doi.org/10.1016/j.ensm.2020.08.014.
[24] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539. https://doi.org/10.1039/C5CS00303B.
[25] C. Zhao, W. Zheng, A Review for Aqueous Electrochemical Supercapacitors, Front. Energy Res. 3 (2015). https://doi.org/10.3389/fenrg.2015.00023.
[26] Md.Y. Bhat, N. Yadav, S.A. Hashmi, Gel Polymer Electrolyte Composition Incorporating Adiponitrile as a Solvent for High-Performance Electrical Double-Layer Capacitor, ACS Appl. Energy Mater. 3 (2020) 10642–10652. https://doi.org/10.1021/acsaem.0c01690.
[27] S.A. Hashmi, N. Yadav, M.K. Singh, Polymer Electrolytes for Supercapacitor and Challenges, in: Polymer Electrolytes, John Wiley & Sons, Ltd, 2020: pp. 231–297. https://doi.org/10.1002/9783527805457.ch9.
[28] D. Wei, S.J. Wakeham, T.W. Ng, M.J. Thwaites, H. Brown, P. Beecher, Transparent, flexible and solid-state supercapacitors based on room temperature ionic liquid gel, Electrochemistry Communications 11 (2009) 2285–2287. https://doi.org/10.1016/j.elecom.2009.10.011.
[29] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306.
[30] L. Verger, V. Natu, M. Carey, M.W. Barsoum, MXenes: An Introduction of Their Synthesis, Select Properties, and Applications, Trends in Chemistry 1 (2019) 656–669. https://doi.org/10.1016/j.trechm.2019.04.006.
[31] Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 – Naguib – 2011 – Advanced Materials – Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/10.1002/adma.201102306 (accessed April 23, 2024).
[32] S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. (John) Zhang, Perspectives on solution processing of two-dimensional MXenes, Materials Today 48 (2021) 214–240. https://doi.org/10.1016/j.mattod.2021.02.010.
[33] Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications | Rare Metals, (n.d.). https://link.springer.com/article/10.1007/s12598-022-02058-2 (accessed April 24, 2024).
[34] L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route, J. Mater. Chem. A 3 (2015) 8361–8368. https://doi.org/10.1039/C5TA00139K.
[35] P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale 8 (2016) 11385–11391. https://doi.org/10.1039/C6NR02253G.
[36] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L. Ma, H.-M. Cheng, W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nature Mater 14 (2015) 1135–1141. https://doi.org/10.1038/nmat4374.
[37] T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment, Angewandte Chemie International Edition 57 (2018) 6115–6119. https://doi.org/10.1002/anie.201800887.
[38] S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System, Angewandte Chemie 130 (2018) 15717–15721. https://doi.org/10.1002/ange.201809662.
[39] W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution, J. Mater. Chem. A 5 (2017) 21663–21668. https://doi.org/10.1039/C7TA05574A.
[40] X.-H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, S. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes, EPL 111 (2015) 26007. https://doi.org/10.1209/0295-5075/111/26007.
[41] K.A. Papadopoulou, A. Chroneos, D. Parfitt, S.-R.G. Christopoulos, A perspective on MXenes: Their synthesis, properties, and recent applications, Journal of Applied Physics 128 (2020) 170902. https://doi.org/10.1063/5.0021485.
[42] C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.-H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes), Chem. Mater. 29 (2017) 4848–4856. https://doi.org/10.1021/acs.chemmater.7b00745.
[43] N. Zhang, Y. Hong, S. Yazdanparast, M.A. Zaeem, Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study, 2D Mater. 5 (2018) 045004. https://doi.org/10.1088/2053-1583/aacfb3.
[44] H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi, V.B. Shenoy, Tunable Magnetism and Transport Properties in Nitride MXenes, ACS Nano 11 (2017) 7648–7655. https://doi.org/10.1021/acsnano.7b02578.
[45] A. Bandyopadhyay, D. Ghosh, S.K. Pati, Effects of point defects on the magnetoelectronic structures of MXenes from first principles, Phys. Chem. Chem. Phys. 20 (2018) 4012–4019. https://doi.org/10.1039/C7CP07165E.
[46] Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi, P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochemistry Communications 48 (2014) 118–122. https://doi.org/10.1016/j.elecom.2014.09.002.
[47] U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application, Journal of Alloys and Compounds 509 (2011) 1677–1682. https://doi.org/10.1016/j.jallcom.2010.09.133.
[48] P.J. Sephra, P. Baraneedharan, C. Tharini, 5 – Transition metal oxides/sulfides electrode–based supercapacitors, in: S.G. Krishnan, H.D. Pham, D.P. Dubal (Eds.), Supercapacitors, Elsevier, 2024: pp. 93–123. https://doi.org/10.1016/B978-0-443-15478-2.00009-7.
[49] F. Li, Y.-L. Liu, G.-G. Wang, H.-Y. Zhang, B. Zhang, G.-Z. Li, Z.-P. Wu, L.-Y. Dang, J.-C. Han, Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors, J. Mater. Chem. A 7 (2019) 22631–22641. https://doi.org/10.1039/C9TA08144E.
[50] Y. Tian, C. Yang, W. Que, X. Liu, X. Yin, L.B. Kong, Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor, Journal of Power Sources 359 (2017) 332–339. https://doi.org/10.1016/j.jpowsour.2017.05.081.
[51] R.A. Chavan, G.P. Kamble, S.B. Dhavale, A.S. Rasal, S.S. Kolekar, J.-Y. Chang, A.V. Ghule, NiO@MXene Nanocomposite as an Anode with Enhanced Energy Density for Asymmetric Supercapacitors, Energy Fuels 37 (2023) 4658–4670. https://doi.org/10.1021/acs.energyfuels.2c04206.
[52] J. Vigneshwaran, R.L. Narayan, D. Ghosh, V. Chakkravarthy, S.P. Jose, Robust hierarchical three dimensional nickel cobalt tungstate-MXene nanocomposite for high performance symmetric coin cell supercapacitors, Journal of Energy Storage 56 (2022) 106102. https://doi.org/10.1016/j.est.2022.106102.
[53] Q. Xia, W. Cao, F. Xu, Y. Liu, W. Zhao, N. Chen, G. Du, Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance, Journal of Energy Storage 47 (2022) 103906. https://doi.org/10.1016/j.est.2021.103906.
[54] W. Zheng, J. Halim, A.S. Etman, A.E. Ghazaly, J. Rosen, M.W. Barsoum, Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene, Electrochimica Acta 370 (2021) 137665. https://doi.org/10.1016/j.electacta.2020.137665.
[55] W. Zheng, J. Halim, A. El Ghazaly, A.S. Etman, E.N. Tseng, P.O.Å. Persson, J. Rosen, M.W. Barsoum, Flexible Free-Standing MoO3/Ti3C2Tz MXene Composite Films with High Gravimetric and Volumetric Capacities, Advanced Science 8 (2021) 2003656. https://doi.org/10.1002/advs.202003656.
[56] Q. Wang, Z. Zhang, Z. Zhang, X. Zhou, G. Ma, Facile synthesis of MXene/MnO2 composite with high specific capacitance, J Solid State Electrochem 23 (2019) 361–365. https://doi.org/10.1007/s10008-018-4143-4.
[57] R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications, ACS Appl. Mater. Interfaces 8 (2016) 18806–18814. https://doi.org/10.1021/acsami.6b04481.
[58] H. Jiang, Z. Wang, Q. Yang, M. Hanif, Z. Wang, L. Dong, M. Dong, A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors, Electrochimica Acta 290 (2018) 695–703. https://doi.org/10.1016/j.electacta.2018.08.096.
[59] S. Chen, Y. Xiang, W. Xu, C. Peng, A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance, Inorg. Chem. Front. 6 (2019) 199–208. https://doi.org/10.1039/C8QI00957K.
[60] W. Yuan, L. Cheng, B. Zhang, H. Wu, 2D-Ti3C2 as hard, conductive substrates to enhance the electrochemical performance of MnO2 for supercapacitor applications, Ceramics International 44 (2018) 17539–17543. https://doi.org/10.1016/j.ceramint.2018.06.086.
[61] R. Ramachandran, C. Zhao, M. Rajkumar, K. Rajavel, P. Zhu, W. Xuan, Z.-X. Xu, F. Wang, Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor, Electrochimica Acta 322 (2019) 134771. https://doi.org/10.1016/j.electacta.2019.134771.
[62] Q.X. Xia, J. Fu, J.M. Yun, R.S. Mane, K.H. Kim, High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor, RSC Adv. 7 (2017) 11000–11011. https://doi.org/10.1039/C6RA27880A.
[63] N.A. Althubiti, S. Aman, T.A.M. Taha, Synthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor application, Ceramics International 49 (2023) 27496–27505. https://doi.org/10.1016/j.ceramint.2023.06.025.
[64] J. Zhu, Y. Tang, C. Yang, F. Wang, M. Cao, Composites of TiO2 Nanoparticles Deposited on Ti3C2 MXene Nanosheets with Enhanced Electrochemical Performance, J. Electrochem. Soc. 163 (2016) A785. https://doi.org/10.1149/2.0981605jes.
[65] T. Arun, A. Mohanty, A. Rosenkranz, B. Wang, J. Yu, M.J. Morel, R. Udayabhaskar, S.A. Hevia, A. Akbari-Fakhrabadi, R.V. Mangalaraja, A. Ramadoss, Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications, Electrochimica Acta 367 (2021) 137473. https://doi.org/10.1016/j.electacta.2020.137473.
[66] S.B. Ambade, R.B. Ambade, W. Eom, S.H. Noh, S.H. Kim, T.H. Han, 2D Ti3C2 MXene/WO3 Hybrid Architectures for High-Rate Supercapacitors, Advanced Materials Interfaces 5 (2018) 1801361. https://doi.org/10.1002/admi.201801361.
[67] I. Ayman, A. Rasheed, S. Ajmal, A. Rehman, A. Ali, I. Shakir, M.F. Warsi, CoFe2O4 Nanoparticle-Decorated 2D MXene: A Novel Hybrid Material for Supercapacitor Applications,Energy Fuels 34 (2020) 7622–7630. https://doi.org/10.1021/acs.energyfuels.0c00959.
[68] F. Wang, M. Cao, Y. Qin, J. Zhu, L. Wang, Y. Tang, ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance, RSC Adv. 6 (2016) 88934–88942. https://doi.org/10.1039/C6RA15384D.
[69] M. Mahmood, K. Chaudhary, M. Shahid, I. Shakir, P.O. Agboola, M. Aadil, Fabrication of MoO3 Nanowires/MXene@CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications, Ceramics International 48 (2022)19314–19323. https://doi.org/10.1016/j.ceramint.2022.03.226.
[70] J. Zhu, X. Lu, L. Wang, Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors, RSC Adv. 6 (2016) 98506–98513. https://doi.org/10.1039/C6RA15651G.
[71] X. Zhang, B. Shao, A. Guo, Z. Gao, Y. Qin, C. Zhang, F. Cui, X. Yang, Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors, Journal of Alloys and Compounds 862 (2021) 158546. https://doi.org/10.1016/j.jallcom.2020.158546.
[72] C. Li, G. Jiang, T. Liu, Z. Zeng, P. Li, R. Wang, X. Zhang, NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors, Journal of Energy Storage 49 (2022) 104176. https://doi.org/10.1016/j.est.2022.104176.
[73] Y. Zhang, J. Cao, Z. Yuan, L. Zhao, L. Wang, W. Han, Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors, Journal of Colloid and Interface Science 599 (2021) 109–118. https://doi.org/10.1016/j.jcis.2021.04.089.
[74] C. Zhang, M. Beidaghi, M. Naguib, M.R. Lukatskaya, M.-Q. Zhao, B. Dyatkin, K.M. Cook, S.J. Kim, B. Eng, X. Xiao, D. Long, W. Qiao, B. Dunn, Y. Gogotsi, Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials, Chem. Mater. 28 (2016) 3937–3943. https://doi.org/10.1021/acs.chemmater.6b01244.
[75] X. Lu, J. Zhu, W. Wu, B. Zhang, Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance, Electrochimica Acta 228 (2017) 282–289. https://doi.org/10.1016/j.electacta.2017.01.025.
[76] C. Peng, Z. Kuai, T. Zeng, Y. Yu, Z. Li, J. Zuo, S. Chen, S. Pan, L. Li, WO3 Nanorods/MXene composite as high performance electrode for supercapacitors, Journal of Alloys and Compounds 810 (2019) 151928. https://doi.org/10.1016/j.jallcom.2019.151928.
[77] J. Zhao, F. Liu, W. Li, Phosphate Ion-Modified RuO2/Ti3C2 Composite as a High-Performance Supercapacitor Material, Nanomaterials (Basel) 9 (2019) 377. https://doi.org/10.3390/nano9030377.
[78] Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance, Journal of Power Sources 414 (2019) 540–546. https://doi.org/10.1016/j.jpowsour.2019.01.036.
[79] J. Song, P. Hu, Y. Liu, W. Song, X. Wu, Enhanced Electrochemical Performance of Co2NiO4/Ti3C2Tx Structures through Coupled Synergistic Effects, ChemistrySelect 4 (2019) 12886–12890. https://doi.org/10.1002/slct.201903511.