Prospects of metal organic framework (MOF) as excellent electrode material for supercapacitors

$40.00

Prospects of metal organic framework (MOF) as excellent electrode material for supercapacitors

Ariharaputhiran Anitha, Amalraj John

Supercapacitors(SCs) are the need of the hour as it has salient features like fast charging/discharging and long cycle life. As the electrode plays a crucial role of its performance, fabrication of electrode material is of significance. As Metal-organic frameworks (MOFs) imparts properties like high-tunability, favorable porous properties, tunable chemical compositions, controllable crystal structures, and adjustable geometry morphologies, which are favourable for the enhanced performance of SCs. The chapter provides a database of knowledge on how MOF with diversified physical and chemical features and functionalities can be utilized for the possible application as electrode material for supercapacitors. The chapter appreciates the choice of pristine MOF, MOF composites and MOF derived materials for an important application in the area of energy. Added to the above, the overview would give us scope for understanding and improving the properties of the MOF and hence the performance of the energy systems. Furthermore, it will kindle the interest to explore few more cost effective MOF for the energy storage application.

Keywords
Metal-Organic Framework, Electrode Material, Supercapacitor, Carbon Derived from MOF, Pristine MOF

Published online 10/20/2024, 23 pages

Citation: Ariharaputhiran Anitha, Amalraj John, Prospects of metal organic framework (MOF) as excellent electrode material for supercapacitors, Materials Research Foundations, Vol. 170, pp 94-116, 2024

DOI: https://doi.org/10.21741/9781644903292-5

Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications

References
[1] L. Xiao, L. Lin, Y. Liu, Discussions on the architecture and operation mode of future power grids, Energies 4 (2011) 1025-1035. https://doi.org/10.3390/en4071025
[2] H. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang, Z. Zhou, X.H. Bu, Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion, Electrochem. Energy Rev. 2 (2019) 29−104. https://doi.org/10.1007/s41918-018-0024-x
[3] B.K.Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for energy storage and conversion, Handbook Clean. Energ. Syst. 5 (2015) 1-25. https://doi.org/10.1002/9781118991978.hces112
[4] Y.Wang, Y. Song, Y. Xia, Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, (2016) 5925-5950. https://doi.org/10.1039/C5CS00580A
[5] G.Gautham Prasad, N. Nidheeshshetty, S. Thakur, Rakshitha, K.B. Bommegowda, Supercapacitor Technology and its Applications: A Review. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 561, 012105 https://doi.org/10.1088/1757-899X/561/1/012105
[6] L. G. H. Staaf, P. Lundgren, P. Enoksson, Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems, Nano Energy 9 (2014) 128−141. https://doi.org/10.1016/j.nanoen.2014.06.028
[7] L. Zeng, X. Lou, J. Zhang, C. Wu, J. Liu, C. Jia, Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technology 357 (2019) 580-586. https://doi.org/10.1016/j.surfcoat.2018.10.041
[8] Y. Jiang, J. Liu, Definitions of pseudocapacitive Materials: A brief review, Energy Environ. Mater. 2 (2019) 30-37. https://doi.org/10.1002/eem2.12028
[9] R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-Organic Framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects, ACS Nano. 11 (2017) 5293-5308. https://doi.org/10.1021/acsnano.7b02796
[10] Z. Yong, F. Hui, W. Xingbing, W. Lizhen, Progress of electrochemical capacitor electrode materials: a review, Int. J. Hydrog. Energy 34 (2009) 4889- 4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
[11] R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nanostructured ternary electrodes for energy-storage applications, Adv. Energ. Mater. 2 (2012) 381-389. https://doi.org/10.1002/aenm.201100609
[12] M. Boota, Y. Gogotsi, MXene-Conducting polymer asymmetric pseudocapacitors, Adv. Energ. Mater. 9 (2019) 1802917. https://doi.org/10.1002/aenm.201802917
[13] S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-Metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage, Adv. Energ. Mater. 7 (2017) 1602733. https://doi.org/10.1002/aenm.201602733
[14] S. L. James, Metal-organic frameworks, Chem. Soc. Rev. 32 (2003)276-288. https://doi.org/10.1039/b200393g
[15] M. Kurmoo, Magnetic metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1353-1379. https://doi.org/10.1039/b804757j
[16 L. Chen, K. Tan, Y.Q. Lan, S.L. Li, K.Z. Shao Z.-M. Su, Unusual microporous polycatenane-like metal-organic frameworks for the luminescent sensing of Ln3+cations and rapid adsorption of iodine, Chem. Commun. 48 (2012) 5919-5921. https://doi.org/10.1039/c2cc31257c
[17] R.Q. Zou, H. Sakurai, S. Han, R.Q. Zhong, Q. Xu, Probing the Lewis Acid Sites and CO Catalytic Oxidation Activity of the Porous Metal−Organic Polymer [Cu(5-methylisophthalate)], J. Am. Chem. Soc. 129 (2007) 8402-8403. https://doi.org/10.1021/ja071662s
[18] A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci. 5 (2012) 9269-9290. https://doi.org/10.1039/c2ee22989g
[19] X. Q. Liang, F. Zhang, W. Feng, X. Q. Zou, C. J. Zhao, H. Na, C. Liu, F. X. Sun, G. S. Zhu, From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity, Chem. Sci. 4, (2013) 983-992. https://doi.org/10.1039/C2SC21927A
[20] A. Banerjee, K. K. Upadhyay, D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs), Nanoscale 6 (2014) 4387-4394. https://doi.org/10.1039/c4nr00025k
[21] S. Dutta, A. Bhaumik and K. C.-W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications, Energy Environ. Sci. 7 (2014) 3574-3592 https://doi.org/10.1039/C4EE01075B
[22] A. V. Vinogradov, H. Z. Hertling, E. H. Hawkins, A. V. Agafonov, G. A. Seisenbaeva, V. G. Kessler, V. V. Vinogradov, The first depleted heterojunction TiO2-MOF-based solar cell, Chem. Commun., 50 (2014) 10210-10213. https://doi.org/10.1039/C4CC01978D
[23] J. W. Zhou, R. Li, X. X. Fan, Y. F. Chen, R. D. Han, W. Li, J. Zheng, B. Wang and X. G. Li, Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries, Energy Environ. Sci. 7 (2014) 2715-2724. https://doi.org/10.1039/C4EE01382D
[24] P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal-organic frameworks, Ind. Eng. Chem. Res. 51, (2012) 6513-6519. https://doi.org/10.1021/ie202325p
[25] I. Senkovska, S.Kaskel, Ultrahigh porosity in mesoporous MOFs: Promises and limitations, Chem. Commun. (Camb). 50, (2014) 7089-7098. https://doi.org/10.1039/c4cc00524d
[26] O.M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc. 117 (1995) 10401−10402. https://doi.org/10.1021/ja00146a033
[27] A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P.Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, M.D. Allendorf, Tunable electrical conductivity in metal organic framework thin-film devices, Science 343 (2014) 66−69. https://doi.org/10.1126/science.1246738
[28] D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn, S.H Han, Unusual energy storage and charge retention in Co-based metal-organic-frameworks, Microporous Mesoporous Mater. 153, (2012) 163−165. https://doi.org/10.1016/j.micromeso.2011.12.040
[29] D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh, N.K. Shrestha, J.K. Lee, S.H. Han, Supercapacitive property of metal-organic-frameworks with different pore dimensions and Morphology, Microporous Mesoporous Mater. 171 (2013) 53−57. https://doi.org/10.1016/j.micromeso.2012.12.039
[30] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957−961. https://doi.org/10.1016/j.cclet.2014.05.032
[31] Y.Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high performance flexible supercapacitors, J. Mater. Chem. A 4 (2016) 19078−19085. https://doi.org/10.1039/C6TA08331E
[32] J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode, J. Mater. Chem. A 2 (2014) 16640−16644. https://doi.org/10.1039/C4TA04140B
[33] J. Liu, Y. Zhou, Z. Xie, Y. Li, Y. Liu, J. Sun, Y. Ma, O. Terasaki, L. Chen, Conjugated copper-catecholate framework electrodes for efficient energy storage, Angew. Chem. Int. Ed. 59 (2020) 1081−1086. https://doi.org/10.1002/anie.201912642
[34] W.H. Li, K. Ding, H.R. Tian, M.S. Yao, B. Nath, W.H. Deng, Y. Wang, G. Xu, Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors, Adv. Funct. Mater. 27 (2017) 1702067. https://doi.org/10.1002/adfm.201702067
[35] J.P. Meng, Y. Gong, Q. Lin, M.M. Zhang, P. Zhang, H.F. Shi, J.H. Lin, Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor, Dalton Trans. 44 (2015) 5407−5416. https://doi.org/10.1039/C4DT03702B
[36] C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study, Nano Energy 26 (2016) 66−73. https://doi.org/10.1016/j.nanoen.2016.04.003
[37] X. Liu, C. Shi, C. Zhai, M. Cheng, Q. Liu, G. Wang, Cobalt based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material, ACS Appl. Mater. Interfaces 8 (2016) 4585−4591. https://doi.org/10.1021/acsami.5b10781
[38] K. Wang, Z. Wang, X. Wang, X. Zhou, Y. Tao, H. Wu, Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies, J. Power Sources 377 (2018) 44−51. https://doi.org/10.1016/j.jpowsour.2017.11.087
[39] R. Abazari, S. Sanati, A. Morsali, A. Slawin, C.L. Carpenter-Warren, Dual-purpose 3D pillared metal-organic framework with excellent properties for catalysis of oxidative desulfurization and energy storage in asymmetric supercapacitor, ACS Appl. Mater. Interfaces 11 (2019), 14759−14773. https://doi.org/10.1021/acsami.9b00415
[40] Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing {001} crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage, Small 15 (2019) 1902463. https://doi.org/10.1002/smll.201902463
[41] H. Yu, H. Xia, J. Zhang, J. He, S. Guo, Q. Xu, Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances, Chin. Chem. Lett. 29 (2018) 834−836. https://doi.org/10.1016/j.cclet.2018.04.008
[42] F. Xu, N. Chen, Z. Fan, G. Du, Ni/Co-based metal organic frameworks rapidly synthesized in ambient environment for high energy and power hybrid supercapacitors, Appl. Surf. Sci. 528 (2020) 146920. https://doi.org/10.1016/j.apsusc.2020.146920
[43] J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni- MOF material with a high supercapacitive performance, J. Mater. Chem. A 2 (2014) 19005−19010. https://doi.org/10.1039/C4TA04346D
[44] H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances, Nano-Micro Lett. 9 (2017) 43. https://doi.org/10.1007/s40820-017-0144-6
[45] C.Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy, J. Mater. Chem. A 7 (2019) 4998−5008 https://doi.org/10.1039/C8TA11948A
[46] Y.Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors, J. Mater. Chem. A 5 (2017) 1094−1102. https://doi.org/10.1039/C6TA09805C
[47] J. Sun, X. Yu, S. Zhao, H. Chen, K. Tao, L. Han, Solvent controlled morphology of amino-functionalized bimetal metal-organic frameworks for asymmetric supercapacitors, Inorg. Chem. 59 (2020) 11385−11395. https://doi.org/10.1021/acs.inorgchem.0c01157
[48] S. H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal-organic frameworks: Electrode materials for supercapacitors with excellent areal capacitance and operational stability, ACS Appl. Mater. Interfaces 10 (2018) 23063−23073. https://doi.org/10.1021/acsami.8b04502
[49] S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors, J. Colloid Interface Sci. 531 (2018) 83−90. https://doi.org/10.1016/j.jcis.2018.07.044
[50] T. Sun, L. Yue, N. Wu, M. Xu, W. Yang, H. Guo, W. Yang, Isomorphism combined with intercalation methods to construct a hybrid electrode material for high-energy storage capacitors, J. Mater. Chem. A 7 (2019) 25120−25131. https://doi.org/10.1039/C9TA08696J
[51] Y. Liang, W. Yao, J. Duan, M. Chu, S. Sun, X. Li, Nickel cobalt bimetallic metal-organic frameworks with a layer-and-channel structure for high-performance supercapacitors, J.Energy Storage 33 (2021) 102149. https://doi.org/10.1016/j.est.2020.102149
[52] R.Rajak, M. Saraf, S.M. Mobin, Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal-organic framework for high-performance supercapacitors, Inorg. Chem. 59 (2020) 1642−1652. https://doi.org/10.1021/acs.inorgchem.9b02762
[53] R.Rajak, M. Saraf, S.M. Mobin, Robust heterostructures of a bimetallic sodium zinc metal-organic framework and reduced grapheme oxide for high-performance supercapacitors, J. Mater. Chem. A 7 (2019) 1725−1736. https://doi.org/10.1039/C8TA09528K
[54] L. Cui, K. Yu, J. Lv, C. Guo, B. Zhou, A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide, J. Mater. Chem. A 8 (2020) 22918−22928. https://doi.org/10.1039/D0TA08759A
[55] J. Feng, L. Liu, Q. Meng, Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes, J. Colloid Interface Sci. 582, (2021) 447-458. https://doi.org/10.1016/j.jcis.2020.08.091
[56] S. C. Wechsler, F. Z. Amir, Superior electrochemical performance of pristine nickel hexaaminobenzene mof supercapacitors fabricated by electrophoretic deposition ChemSusChem 13, (2020) 1491-1495. https://doi.org/10.1002/cssc.201902691
[57] Y. Z. Zhang, T. Cheng, Y. Wang, W. Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@mofs via chemically induced in situ self-transformation,Adv. Mater. 28 (2016) 5242-5248. https://doi.org/10.1002/adma.201600319
[58] L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li, Z. Jin, J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan, Y. J. Zeng, Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution, Electrochim. Acta 281, (2018) 189-197. https://doi.org/10.1016/j.electacta.2018.05.162
[59] D. Fu, H. Li, X. M. Zhang, G. Han, H. Zhou, Y. Chang, Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT, Mater. Chem. Phys. 179, (2016) 166-173. https://doi.org/10.1016/j.matchemphys.2016.05.024
[60] J. Xu, Y. Wang, S. Cao, J. Zhang, G. Zhang, H. Xue, Q. Xu, H. Pang, Ultrathin Cu-MOF@delta-MnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. J. Mater.Chem. A 6 (2018) 17329−17336. https://doi.org/10.1039/C8TA05976D
[61] C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high performance supercapacitor electrodes. J. Energy Chem. 35(2019) 124−131. https://doi.org/10.1016/j.jechem.2018.11.006
[62] S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, A highly alkaline stable metal oxide@metal-organic framework composite for high performance electrochemical energy storage. Natl. Sci. Rev. 7(2020), 305−314. https://doi.org/10.1093/nsr/nwz137
[63] X. Shi, T. Deng, G. Zhu, Vertically oriented Ni-MOF@ Co(OH)2 flakes towards enhanced hybrid supercapacitior performance, J. Colloid Interface Sci. 593, (2021) 214−221. https://doi.org/10.1016/j.jcis.2021.02.096
[64] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI, J. Am. Chem. Soc. 137 (2015) 4920−4923. https://doi.org/10.1021/jacs.5b01613
[65] Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang, J. Wang, Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage, RSC Adv. 5 (2015) 58100−58106. https://doi.org/10.1039/C5RA11597C
[66] P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density, J. Mater. Chem. A 3 (2015), 13874−13883. https://doi.org/10.1039/C5TA02461G
[67] X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y. Yamauchi, Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 38737−38744. https://doi.org/10.1021/acsami.7b09944
[68] P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced grapheme oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 157 (2015) 69−77. https://doi.org/10.1016/j.electacta.2015.01.082
[69] K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos, V. Ranc, M. Petr, V. Stavila, C. Narayana, B. Scheibe, S. Kment, M. Otyepka, N. Motta, D. Dubal, R. Zboril, R.A.Fischer, Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors, Adv. Mater. 33 (2021), 2004560. https://doi.org/10.1002/adma.202004560
[70] X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J.M. Razal, J. Liu, Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors, J. Mater. Chem. A 7 (2019) 3815−3827. https://doi.org/10.1039/C8TA11396C
[71] P.Banerjee, D.E. Lobo, R. Middag, W. Ng, M.E. Shaibani, M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: More than the sum of its parts, ACS Appl. Mater. Interfaces 7 (2015) 3655−3664. https://doi.org/10.1021/am508119c
[72] D.Tian, N. Song, M. Zhong, X. Lu, C. Wang, Bimetallic MOF nanosheets decorated on electrospun nanofibers for high performance asymmetric supercapacitors, ACS Appl. Mater. Interfaces 12 (2020) 1280−1291. https://doi.org/10.1021/acsami.9b16420
[73] Y. Jiao, G. Chen, D. Chen, J. Pei, Y. Hu, Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage, J. Mater.Chem. A 5 (2017) 23744−23752. https://doi.org/10.1039/C7TA07464F
[74] C.Wang, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L.Wang, Electrospun metal- organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors, Chem. Commun. 53 (2017) 1751-1754. https://doi.org/10.1039/C6CC09832K
[75] X.Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano- structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion, Chem. Soc. Rev. 46 (2017) 2660-2677. https://doi.org/10.1039/C6CS00426A
[76] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S.Ruoff, V.Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science. 347 (2015) 1246501. https://doi.org/10.1126/science.1246501
[77] S. Dai, Y. Yuan, J. Yu, J. Tang, J. Zhou, W. Tang, Metal-organic framework-templated synthesis of sulfur-doped core-sheath nanoarrays and nanoporous carbon for flexible all-solid-state asymmetric supercapacitors, Nanoscale 10 (2018) 15454-15461. https://doi.org/10.1039/C8NR03743D
[78] M. Gao, J. Fu, M. Wang, K. Wang, S. Wang, Z. Wang, Z.Chen, Q.Xu, A self- template and self-activation co-coupling green strategy to synthesize high surface area ternary-doped hollow carbon microspheres for high performance supercapacitors, J. Colloid Interf. Sci. 524, (2018). 165-176. https://doi.org/10.1016/j.jcis.2018.04.027
[79] W. Ma, L. Xie, L.Dai, G. Sun, J. Chen, F. Su, Y.Cao, H.Lei, O.Kong, C.M.Chen, Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode, Electrochim. Acta. 266 (2018) 420-430. https://doi.org/10.1016/j.electacta.2018.02.031
[80] D.K.Kim, S. Bong, X. Jin, K.D. Seong, M, Hwang, N.D. Kim, N. H.You, Y.Piao,Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors, ACS Appl. Mater. Inter. 11, (2019).1996-2005. https://doi.org/10.1021/acsami.8b15162
[81] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-Organic Framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130 (2008) 5390-5391. https://doi.org/10.1021/ja7106146
[82] B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor Carbon 48 (2010) 456-463. https://doi.org/10.1016/j.carbon.2009.09.061
[83] J. Hu, H. Wang, Q. Gao, H. Guo, Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors Carbon 48 (2010) 3599-3606. https://doi.org/10.1016/j.carbon.2010.06.008
[84] H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des. 13 (2013) 4195-4199. https://doi.org/10.1021/cg401122u
[85] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake J.Am. Chem. Soc. 133 (2011) 11854-11857. https://doi.org/10.1021/ja203184k
[86] W. Chaikittisilp, M. Hu, H. Wang, H.S. Huang, T. Fujita, K.C. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem. Commun. 48 (2012) 7259-7261. https://doi.org/10.1039/c2cc33433j
[87] A.J. Amali, J.K. Sun, Q. Xu, From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage, Chem. Commun. 50 (2014) 1519-1522. https://doi.org/10.1039/C3CC48112C
[88] R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou, J.H. Kim, Y. Yamauchi, Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons, J. Mater. Chem. A 2 (2014) 19848-19854. https://doi.org/10.1039/C4TA04277H
1 [89] J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon, J.Am. Chem. Soc. 137 (2015) 1572-1580. https://doi.org/10.1021/ja511539a
[90] A. Banerjee, K.K. Upadhyay, D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs) Nanoscale 6 (2014) 4387-4394. https://doi.org/10.1039/c4nr00025k
[91] T.H.Chang, C. Young, M.H. Lee, R.R. Salunkhe, S.M. Alshehri, T. Ahamad, T.Islam, C.W.Wu, S.A. Hossain, Y.Yamauchi, K.C.Ho, Synthesis of MOF-525 derived nanoporous carbons with different particle sizes for supercapacitor application, Chem. Asian J. 12, (2017) 2857-2862. https://doi.org/10.1002/asia.201701082
[92] Y. Wang, X. Xie, B. Zhang, J. Luo, S. Wang, S. Nie, S. Lin, H.Yang, A New Cd- based metal organic framework derived nitrogen doped nano-porous carbon for high supercapacitor performance, Polyhedron. 189, (2020) 114726. https://doi.org/10.1016/j.poly.2020.114726
[93] S.C. Wu, P.H. Chang, S.H. Chou, C.Y. Huang, T.C. Liu, C.H Peng, Waffle-like carbons combined with enriched mesopores and highly heteroatom-doped derived from sandwiched MOF/LDH/MOF for high-rate supercapacitor. Nanomaterials 10. (2020) 2388 https://doi.org/10.3390/nano10122388
[94] M. Liu, F. Zhao, D. Zhu, H. Duan, Y. Lv, L. Li, L.Gan, Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors, Mater. Chem. Phys. 211 (2018) 234-241. https://doi.org/10.1016/j.matchemphys.2018.02.030
[95] W. Bao, A.K. Mondal, J. Xu, C. Wang, D. Su, G. Wang, G. 3D Hybrid- porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors, J. Power Sourc. 325 (2016) 286-291. https://doi.org/10.1016/j.jpowsour.2016.06.037
[96] Z. Tang, G. Zhang, H. Zhang, L. Wang, H. Shi, D. Wei, H.Duan, MOF derived N-doped carbon bubbles on carbon tube arrays for flexible high- rate supercapacitors, Energ. Storage Mater. 10, (2018) 75-84. https://doi.org/10.1016/j.ensm.2017.08.009
[97] M.L. Yue, C.Y. Yu, H.H. Duan, B.L. Yang, X.X. Meng, Z.X. Li, six isomorphous window-beam MOFs: Explore the effects of metal ions on mof-derived carbon for supercapacitors, Chem. Eur. J. 24 (2018) 16160-16169. https://doi.org/10.1002/chem.201803554
[98] J. Cai, Y. Song, X. Chen, Z. Sun, Y. Yi, J. Sun, Q. Zhang, MOF-derived conductive carbon nitrides for separator-modified li-s batteries and flexible supercapacitors, J. Mater. Chem. A. 8 (2020) 1757-1766. https://doi.org/10.1039/C9TA11958B
[99] Y. Chen, L. Hu, Novel Co3O4 porous polyhedrons derived from metal-organic framework toward high performance for electrochemical energy devices, J. Solid State Chem. 239 (2016) 23-29. https://doi.org/10.1016/j.jssc.2016.02.009
[100] K. Wang, X. Yi, X. Luo, Y. Shi, J. Xu, Fabrication of Co3O4 pseudocapacitor electrodes from nanoscale cobalt-organic frameworks, Polyhedron 109 (2016) 26-32. https://doi.org/10.1016/j.poly.2016.01.046
[101] W. Xu, T.T. Li, Y.Q. Zheng, Porous Co3O4 nanoparticles derived from a Co(II)-cyclohexanehexacarboxylate metal-organic framework and used in a supercapacitor with good cycling stability, RSC Adv. 6 (2016) 86447-86454 https://doi.org/10.1039/C6RA17471J
[102] Z. Sun, F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, H. Hu, Y. He, Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode, J. Mater. Sci. Mater. Electron. 28 (2017) 14019-14025 https://doi.org/10.1007/s10854-017-7252-4
[103] H. Li, F. Yue, C. Yang, P. Qiu, P. Xue, Q. Xu, J. Wang, Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes, Ceram. Int. 42 (2016) 3121-3129. https://doi.org/10.1016/j.ceramint.2015.10.101
[104] C. Guan, W. Zhao, Y. Hu, Z. Lai, X. Li, S. Sun, H. Zhang, A.K. Cheetham, J. Wang, Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors, Nanoscale Horiz. 2 (2017) 99-105. https://doi.org/10.1039/C6NH00224B
[105] Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors, J. Mater. Chem. A 3 (2015) 20658-20663. https://doi.org/10.1039/C5TA04663G
[106] T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented mof electrodes, Adv. Energy Mater. 8, (2017) 1702294. https://doi.org/10.1002/aenm.201702294
[107] M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao, L. Han, MOF-derived hollow double-shelled NiO nanospheres for high-performance supercapacitors, J. Alloys Compd., 734 (2018)1-8. https://doi.org/10.1016/j.jallcom.2017.10.171
[108] S. Chen, D. Cai, X. Yang, Q. Chen, H. Zhan, B. Qu, T. Wang, Metal-organic frameworks derived nanocomposites of mixed-valent mnox nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries, Electrochim. Acta 256 (2017) 63-72. https://doi.org/10.1016/j.electacta.2017.10.016
[109] Y. Zhang, B. Lin, J. Wang, P. Han, T. Xu, Y. Sun, X. Zhang, H. Yang, Polyoxometalates@metal-organic frameworks derived porous moo3@cuo as electrodes for symmetric all-solid-state supercapacitor, Electrochim. Acta 191(2016) 795-804. https://doi.org/10.1016/j.electacta.2016.01.161
[110] J. Tian, B. Lin, Y. Sun, X. Zhang, H. Yang, Porous WO3@CuO composites derived from polyoxometalates@metal organic frameworks for supercapacitor, Mater. Lett. 206 (2017) 91-94. https://doi.org/10.1016/j.matlet.2017.06.116
[111] S. Maiti, A. Pramanik, S. Mahanty, Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide, ChemComm. 50 (2014) 11717-11720. https://doi.org/10.1039/C4CC05363J
[112] W. Meng, W. Chen, L. Zhao, Y. Huang, M. Zhu, Y. Huang, Y. Fu, F. Geng, J. Yu, X. Chen, C. Zhi, Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance, Nano Energy 8 (2014) 133-140. https://doi.org/10.1016/j.nanoen.2014.06.007
[113] S. Ullah, I.A. Khan, M. Choucair, A. Badshah, I. Khan, M.A. Nadeem, A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material,
Electrochim. Acta 171 (2015) 142-149. https://doi.org/10.1007/s10440-015-0021-6
[114] I.A. Khan, A. Badshah, M.A. Nadeem, N. Haider, M.A. Nadeem, A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications, Int. J. Hydrogen Energy 39 (2014) 19609-19620. https://doi.org/10.1016/j.ijhydene.2014.09.106
[115] Y. Zhang, H. Chen, C. Guan, Y. Wu, C. Yang, Z. Shen, Q. Zou, Energy-saving synthesis of mof-derived hierarchical and hollow co(vo3)2-co(oh)2 composite leaf arrays for supercapacitor electrode materials, ACS. Appl. Mater. Interfaces 10 (2018) 18440-18444. https://doi.org/10.1021/acsami.8b05501
[116] C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis, Adv. Energy Mater. 7 (2017)1602391. https://doi.org/10.1002/aenm.201770086
[117] Q. Yang, Q. Wang, Y. Long, F. Wang, L. Wu, J. Pan, J. Han, Y. Lei, W. Shi, S. Song, In situ formation of Co9S8 quantum dots in mof-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors, Adv. Energy Mater. 10 (2020) 1903193. https://doi.org/10.1002/aenm.201903193
[118] Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, H. Zhan, Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density, Nanoscale 10 (2018)14171-14181. https://doi.org/10.1039/C8NR03919D
[119] A. Jayakumar, R.P. Antony, R. Wang, J.M. Lee, MOF-Derived Hollow Cage NixCo3−xO4 and Their Synergy with Graphene for Outstanding Supercapacitors, Small 13 (2017) 1603102. https://doi.org/10.1002/smll.201603102
[120] T. Xu, G. Li, L. Zhao, Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors, Chem. Eng. J. 336 (2018) 602-611. https://doi.org/10.1016/j.cej.2017.12.065
[121]W. Li,B. Zhang, R. Lin, S. Ho-Kimura, G. He, X. Zhou, J. Hu, I.P. Parkin, A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes, Adv. Funct. Mater. 28 (2018) 1705937. https://doi.org/10.1002/adfm.201705937
[122] Tao, K.; Han, X.; Cheng, Q.; Yang, Y.; Yang, Z.; Ma, Q.; Han, L. A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors, Chem.-A Eur. J. 24, (2018) 12584-12591. https://doi.org/10.1002/chem.201800960
[123] H. Hu, B. Y. Guan, W. Xiong Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors, Chem 1 (2016) 102-113. https://doi.org/10.1016/j.chempr.2016.06.001
[124]F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, H.Zhang, Synthesis of Two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application, J. Am. Chem. Soc., 138 (2016) 6924-6927. https://doi.org/10.1021/jacs.6b02540
[125] S. Liu, M. Tong, G. Liu, X. Zhang, Z. Wang, G. Wang, W. Cai, H. Zhang, H. Zhao, S,N-containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials, Inorg. Chem. Front. 4 (2017) 491-498 https://doi.org/10.1039/C6QI00403B
[126] S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni, D. Yang, Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage, J. Mater. Chem. A 5 (2017) 12453-12461. https://doi.org/10.1039/C7TA03070C
[127] J.S. Chen, C. Guan, Y. Gui, D.J. Blackwood, Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density, ACS Appl. Mater. Interfaces 9 (2017) 496-504. https://doi.org/10.1021/acsami.6b14746
[128] C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. Huang, M. Liu, R. Zou, MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors, Journal of Materials Chemistry A, 6 (2018) 4003-4012. https://doi.org/10.1039/C7TA11100B
[129] G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, L. Han, MOF-derived self-sacrificing route to hollow NiS2/ZnS nanospheres for high performance supercapacitors, RSC Adv., 6 (2016)103517-103522. https://doi.org/10.1039/C6RA23071G
[130] X.Y. Yu, L. Yu, B. Wu Hao, W. Lou Xiong, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. 127 (2015) 5421-5425. https://doi.org/10.1002/ange.201500267
[131] P. Cai, T. Liu, L. Zhang, B. Cheng, J. Yu, ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors, Appl. Surf. Sci. 504 (2020) 144501. https://doi.org/10.1016/j.apsusc.2019.144501
[132] D. Tian, S. Chen, W. Zhu, C. Wang, X. Lu, Metal-organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-performance supercapacitors, Mater. Chem. Front. 3, (2019) 1653-1660. https://doi.org/10.1039/C9QM00296K
[133] L. Li, J. Zhao, Y. Zhu, X. Pan, H. Wang, J. Xu, Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance, Electrochim. Acta 353, (2020) 136532. https://doi.org/10.1016/j.electacta.2020.136532
[134]L. Tan, D. Guo, D. Chu, J. Yu, L. Zhang, J. Yu, J. Wang, Metal organic frameworks template-directed fabrication of hollow nickel cobalt selenides with pentagonal structure for high-performance supercapacitors, J. Electroanal. Chem. 851, (2019) 113469. https://doi.org/10.1016/j.jelechem.2019.113469
[135] L.Quan, T.Liu, M. Yi, Q. Chen, D. Cai, H. Zhan, Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance, Electrochim. Acta 281, (2018) 109-116. https://doi.org/10.1016/j.electacta.2018.05.100
[136]C. Miao, C. Zhou, H.E. Wang, K. Zhu, K. Ye, Q. Wang, J. Yan, D. Cao, N. Li, G. Wang, Hollow Co-Mo-Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors, J. Power Sources 490 (2021) 229532. https://doi.org/10.1016/j.jpowsour.2021.229532
[137] B.Ameri, A.M. Zardkhoshoui, S.S.H. Davarani, Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors, Dalton Trans. 50 (2021) 8372-8384. https://doi.org/10.1039/D1DT01215K
[138] Q. He, T. Yang, X. Wang, P. Zhou, S. Chen, F. Xiao, P. He, L. Jia, T. Zhang, D. Yang, Metal-organic framework derived hierarchical zinc nickel selenide/nickel hydroxide microflower supported on nickel foam with enhanced electrochemical properties for supercapacitor, J. Mater. Sci. Mater. Electron. 32 (2021) 3649-3660. https://doi.org/10.1007/s10854-020-05111-x
[139] C.Miao, X.Xiao, Y.Gong, K. Zhu, K. Cheng, K. Ye, J. Yan, D. Cao, G. Wang, P. Xu, Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors, ACS Appl. Mater. Interfaces 12 (2020) 9365-9375. https://doi.org/10.1021/acsami.9b22606
[140] W. Chu, Y. Hou, J. Liu, X. Bai, Y. f. Gao, Z. Cao, Zn-Co phosphide porous nanosheets derived from metal-organic-frameworks as battery-type positive electrodes for high-performance alkaline supercapacitors, Electrochim. Acta 364, (2020) 137063. https://doi.org/10.1016/j.electacta.2020.137063
[141] Z. Lv, Q. Zhong, Y. Bu, In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property, Appl. Surf. Sci. 439 (2018) 413-419. https://doi.org/10.1016/j.apsusc.2017.12.185
[142] X. Liu, W. Ang, C. Guan, L. Zhang, Y. Qian, A. M. Elshahawy, D. Zhao, S. J. Pennycook, J. Wang, Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors ACS Energy Lett. 3 (2018) 2462-2469. https://doi.org/10.1021/acsenergylett.8b01393