Role of biomass derived functionalized carbon as potential electrode materials for supercapacitor applications
S. Pavithra, K. Pramoda, A. Sakunthala, Rangappa S. Keri
Because of their many feedstock options, natural abundance, high temperature stability, more effective resistance to corrosion, simplicity in the process, compatibility with composite materials and hybrid structures, and relative affordability, functionalized carbon materials derived from biomass are becoming an increasingly popular trend as supercapacitor electrode materials. A range of renewable basic feedstocks, such as residual forestry and agricultural resources, industrial byproducts, organic waste from communities, aquatic items, etc., are used as source materials to create biocarbon. The kind of biomass, various synthesis processes, activation procedures, and carbonization strategies all have a significant influence on the the physical and chemical properties, structural, and functional characteristics of the biocarbon materials. These elements directly affect how well the synthetic electrode materials operate electrochemically. This chapter provides an in-depth investigation of the latest developments in the use of functionalized carbon materials produced from biomass for supercapacitor applications, as well as a discussion of the challenges and opportunities that lay beyond.
Keywords
Biomass, Carbon Electrodes, Carbonization, Activation, Supercapacitor
Published online 10/20/2024, 34 pages
Citation: S. Pavithra, K. Pramoda, A. Sakunthala, Rangappa S. Keri, Role of biomass derived functionalized carbon as potential electrode materials for supercapacitor applications, Materials Research Foundations, Vol. 170, pp 60-93, 2024
DOI: https://doi.org/10.21741/9781644903292-4
Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications
References
[1] Dong, D.; Xiao, Y. Recent Progress and Challenges in Coal-Derived Porous Carbon for Supercapacitor Applications. Chemical Engineering Journal. Elsevier B.V. August 15, 2023. https://doi.org/10.1016/j.cej.2023.144441.
[2] da Silva, E. P.; Fragal, V. H.; Fragal, E. H.; Sequinel, T.; Gorup, L. F.; Silva, R.; Muniz, E. C. Sustainable Energy and Waste Management: How to Transform Plastic Waste into Carbon Nanostructures for Electrochemical Supercapacitors. Waste Management, 2023, 171, 71–85. https://doi.org/10.1016/j.wasman.2023.08.028.
[3] Rawat, S.; Wang, C. T.; Lay, C. H.; Hotha, S.; Bhaskar, T. Sustainable Biochar for Advanced Electrochemical/Energy Storage Applications. Journal of Energy Storage. Elsevier Ltd July 1, 2023. https://doi.org/10.1016/j.est.2023.107115.
[4] Mudassir, M. A.; Kousar, S.; Ehsan, M.; Usama, M.; Sattar, U.; Aleem, M.; Naheed, I.; Saeed, O. Bin; Ahmad, M.; Akbar, H. F.; et al. Emulsion-Derived Porous Carbon-Based Materials for Energy and Environmental Applications. Renewable and Sustainable Energy Reviews. Elsevier Ltd October 1, 2023. https://doi.org/10.1016/j.rser.2023.113594.
[5] Hakami, O. Urea-Doped Hierarchical Porous Carbons Derived from Sucrose Precursor for Highly Efficient CO2 Adsorption and Separation. Surfaces and Interfaces, 2023, 37, 102668. https://doi.org/https://doi.org/10.1016/j.surfin.2023.102668.
[6] Chen, Y.; Yang, Y.; Ren, N.; Duan, X. Single-Atom Catalysts Derived from Biomass: Low-Cost and High-Performance Persulfate Activators for Water Decontamination. Curr Opin Chem Eng, 2023, 41, 100942. https://doi.org/https://doi.org/10.1016/j.coche.2023.100942.
[7] Cao, Y.; Sun, Y.; Zheng, R.; Wang, Q.; Li, X.; Wei, H.; Wang, L.; Li, Z.; Wang, F.; Han, N. Biomass-Derived Carbon Material as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Biomass Bioenergy, 2023, 168, 106676. https://doi.org/https://doi.org/10.1016/j.biombioe.2022.106676.
[8] Chu, C.; Liu, J.; Wei, L.; Feng, J.; Li, H.; Shen, J. Iron Carbide and Iron Phosphide Embedded N-Doped Porous Carbon Derived from Biomass as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cell. Int J Hydrogen Energy, 2023, 48 (11), 4492–4502. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.10.262.
[9] Wang, X.; Xu, L.; Ge, S.; Foong, S. Y.; Liew, R. K.; Fong Chong, W. W.; Verma, M.; Naushad, Mu.; Park, Y.-K.; Lam, S. S.; et al. Biomass-Based Carbon Quantum Dots for Polycrystalline Silicon Solar Cells with Enhanced Photovoltaic Performance. Energy, 2023, 274, 127354. https://doi.org/https://doi.org/10.1016/j.energy.2023.127354.
[10] Zhang, W.; Liu, R.; Fan, Z.; Wen, H.; Chen, Y.; Lin, R.; Zhu, Y.; Yang, X.; Chen, Z. Synergistic Copper Nanoparticles and Adjacent Single Atoms on Biomass-Derived N-Doped Carbon toward Overall Water Splitting. Inorg Chem Front, 2023, 10 (2), 443–453. https://doi.org/10.1039/D2QI02285K.
[11] Wu, S.; Jin, Y.; Wang, D.; Xu, Z.; Li, L.; Zou, X.; Zhang, M.; Wang, Z.; Yang, H. Fe2O3/Carbon Derived from Peanut Shell Hybrid as an Advanced Anode for High Performance Lithium Ion Batteries. J Energy Storage, 2023, 68, 107731. https://doi.org/https://doi.org/10.1016/j.est.2023.107731.
[12] Xi, Y.; Xiao, Z.; Lv, H.; Sun, H.; Wang, X.; Zhao, Z.; Zhai, S.; An, Q. Template-Assisted Synthesis of Porous Carbon Derived from Biomass for Enhanced Supercapacitor Performance. Diam Relat Mater, 2022, 128, 109219. https://doi.org/https://doi.org/10.1016/j.diamond.2022.109219.
[13] Priya, D. S.; Kennedy, L. J.; Anand, G. T. Emerging Trends in Biomass-Derived Porous Carbon Materials for Energy Storage Application: A Critical Review. Materials Today Sustainability. Elsevier Ltd March 1, 2023. https://doi.org/10.1016/j.mtsust.2023.100320.
[14] Sriram, G.; Kurkuri, M.; Oh, T. H. Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review. Energies. MDPI June 1, 2023. https://doi.org/10.3390/en16124641.
[15] He, H.; Zhang, R.; Zhang, P.; Wang, P.; Chen, N.; Qian, B.; Zhang, L.; Yu, J.; Dai, B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. Advanced Science. John Wiley and Sons Inc June 2, 2023. https://doi.org/10.1002/advs.202205557.
[16] Sahu, R. K.; Gangil, S.; Bhargav, V. K.; Sahu, P.; Ghritalahre, B. Synthesizing Biomass into Nano Carbon for Use in High-Performance Supercapacitors – A Brief Critical Review. Journal of Energy Storage. Elsevier Ltd November 20, 2023. https://doi.org/10.1016/j.est.2023.108348.
[17] Yaashikaa, P. R.; Kumar, P. S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnology Reports, 2020, 28, e00570. https://doi.org/https://doi.org/10.1016/j.btre.2020.e00570.
[18] Venkatachalam, C. D.; Sekar, S.; Sengottian, M.; Ravichandran, S. R.; Bhuvaneshwaran, P. A Critical Review of the Production, Activation, and Morphological Characteristic Study on Functionalized Biochar. Journal of Energy Storage. Elsevier Ltd September 1, 2023. https://doi.org/10.1016/j.est.2023.107525.
[19] Zhang, D.; Zhang, Y.; Liu, H.; Xu, Y.; Wu, J.; Li, P. Effect of Pyrolysis Temperature on Carbon Materials Derived from Reed Residue Waste Biomass for Use in Supercapacitor Electrodes. Journal of Physics and Chemistry of Solids, 2023, 178. https://doi.org/10.1016/j.jpcs.2023.111318.
[20] Ayala-Cortés, A.; Arancibia-Bulnes, C. A.; Villafán-Vidales, H. I.; Lobato-Peralta, D. R.; Martínez-Casillas, D. C.; Cuentas-Gallegos, A. K. Solar Pyrolysis of Agave and Tomato Pruning Wastes: Insights of the Effect of Pyrolysis Operation Parameters on the Physicochemical Properties of Biochar. In AIP Conference Proceedings; American Institute of Physics Inc., 2019; Vol. 2126. https://doi.org/10.1063/1.5117681.
[21] Safaei Khorram, M.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y. Biochar: A Review of Its Impact on Pesticide Behavior in Soil Environments and Its Potential Applications. Journal of Environmental Sciences, 2016, 44, 269–279. https://doi.org/https://doi.org/10.1016/j.jes.2015.12.027.
[22] Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels, Bioproducts and Biorefining. March 2010, pp 160–177. https://doi.org/10.1002/bbb.198.
[23] Stenny Winata, A.; Devianto, H.; Frida Susanti, R. Synthesis of Activated Carbon from Salacca Peel with Hydrothermal Carbonization for Supercapacitor Application. Mater Today Proc, 2021, 44, 3268–3272. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.515.
[24] Perera, S. M. H. D.; Wickramasinghe, C.; Samarasiri, B. K. T.; Narayana, M. Modeling of Thermochemical Conversion of Waste Biomass – a Comprehensive Review. Biofuel Research Journal, 2021, 8 (4), 1481–1528. https://doi.org/10.18331/BRJ2021.8.4.3.
[25] Doǧan, H.; Taş, M.; Meşeli, T.; Elden, G.; Genc, G. Review on the Applications of Biomass-Derived Carbon Materials in Vanadium Redox Flow Batteries. ACS Omega. American Chemical Society September 26, 2023, pp 34310–34327. https://doi.org/10.1021/acsomega.3c03648.
[26] Ahmad, A.; Gondal, M. A.; Hassan, M.; Iqbal, R.; Ullah, S.; Alzahrani, A. S.; Memon, W. A.; Mabood, F.; Melhi, S. Preparation and Characterization of Physically Activated Carbon and Its Energetic Application for All-Solid-State Supercapacitors: A Case Study. ACS Omega, 2023, 8 (24), 21653–21663. https://doi.org/10.1021/acsomega.3c01065.
[27] Chen, L.; Xiang, L. Y.; Hu, B.; Zhang, H. Q.; He, G. J.; Yin, X. C.; Cao, X. W. Hierarchical Porous Carbons with Honeycomb-like Macrostructure Derived from Steamed-Rice for High Performance Supercapacitors. Materials Today Sustainability, 2023, 24. https://doi.org/10.1016/j.mtsust.2023.100480.
[28] Chiu, Y. H.; Lin, L. Y. Effect of Activating Agents for Producing Activated Carbon Using a Facile One-Step Synthesis with Waste Coffee Grounds for Symmetric Supercapacitors. J Taiwan Inst Chem Eng, 2019, 101, 177–185. https://doi.org/10.1016/j.jtice.2019.04.050.
[29] Le Van, K.; Luong Thi Thu, T. Preparation of Pore-Size Controllable Activated Carbon from Rice Husk Using Dual Activating Agent and Its Application in Supercapacitor. J Chem, 2019, 2019. https://doi.org/10.1155/2019/4329609.
[30] Chen, W.; Gong, M.; Li, K.; Xia, M.; Chen, Z.; Xiao, H.; Fang, Y.; Chen, Y.; Yang, H.; Chen, H. Insight into KOH Activation Mechanism during Biomass Pyrolysis: Chemical Reactions between O-Containing Groups and KOH. Appl Energy, 2020, 278, 115730. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115730.
[31] Sumangala Devi, N.; Hariram, M.; Vivekanandhan, S. Modification Techniques to Improve the Capacitive Performance of Biocarbon Materials. Journal of Energy Storage. Elsevier Ltd January 1, 2021. https://doi.org/10.1016/j.est.2020.101870.
[32] Navaneethan, D.; Krishna, S. K. Physicochemical Synthesis of Activated Carbon from Canna Indica (Biowaste) for High-Performance Supercapacitor Application. Research on Chemical Intermediates, 2023, 49 (4), 1387–1403. https://doi.org/10.1007/s11164-023-04955-2.
[33] Gajalakshmi, T.; Kalaivani, T.; Thuy Lan Chi, N.; Brindhadevi, K. Investigation on Carbon Derived from Casuarina Bark Using Microwave Activation for High Performance Supercapacitors. Fuel, 2023, 337. https://doi.org/10.1016/j.fuel.2022.127078.
[34] Eleri, O. E.; Lou, F.; Yu, Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. Batteries, 2023, 9 (11), 533. https://doi.org/10.3390/batteries9110533.
[35] Xiaorui, L.; Haiping, Y. A State-of-the-Art Review of N Self-Doped Biochar Development in Supercapacitor Applications. Frontiers in Energy Research. Frontiers Media S.A. 2023. https://doi.org/10.3389/fenrg.2023.1135093.
[36] Sangprasert, T.; Sattayarut, V.; Rajrujithong, C.; Khanchaitit, P.; Khemthong, P.; Chanthad, C.; Grisdanurak, N. Making Use of the Inherent Nitrogen Content of Spent Coffee Grounds to Create Nanostructured Activated Carbon for Supercapacitor and Lithium-Ion Battery Applications. Diam Relat Mater, 2022, 127, 109164. https://doi.org/https://doi.org/10.1016/j.diamond.2022.109164.
[37] Yao, S.; Zhang, Z.; Wang, Y.; Liu, Z.; Li, Z. Simple One-Pot Strategy for Converting Biowaste into Valuable Graphitized Hierarchically Porous Biochar for High-Efficiency Capacitive Storage. J Energy Storage, 2021, 44, 103259. https://doi.org/https://doi.org/10.1016/j.est.2021.103259.
[38] Wang, D.-W.; Li, F.; Yin, L.-C.; Lu, X.; Chen, Z.-G.; Gentle, I. R.; Lu, G. Q. (Max); Cheng, H.-M. Nitrogen-Doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogen-Induced Redox Transitions. Chemistry – A European Journal, 2012, 18 (17), 5345–5351. https://doi.org/https://doi.org/10.1002/chem.201102806.
[39] Liang, X.; Liu, R.; Wu, X. Biomass Waste Derived Functionalized Hierarchical Porous Carbon with High Gravimetric and Volumetric Capacitances for Supercapacitors. Microporous and Mesoporous Materials, 2021, 310, 110659. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110659.
[40] Gao, Y.; Wang, J.; Huang, Y.; Zhang, S.; Zhang, S.; Zou, J. Rational Design of N-Doped Porous Biomass Carbon Nanofiber Electrodes for Flexible Asymmetric Supercapacitors with High-Performance. Appl Surf Sci, 2023, 638. https://doi.org/10.1016/j.apsusc.2023.158137.
[41] Yunita, A.; Farma, R.; Awitdrus, A.; Apriyani, I. The Effect of Various Electrolyte Solutions on the Electrochemical Properties of the Carbon Electrodes of Supercapacitor Cells Based on Biomass Waste. Mater Today Proc, 2023. https://doi.org/10.1016/j.matpr.2023.03.102.
[42] Agrawal, A.; Gaur, A.; Kumar, A. Fabrication of Phyllanthus Emblica Leaves Derived High-Performance Activated Carbon-Based Symmetric Supercapacitor with Excellent Cyclic Stability. J Energy Storage, 2023, 66. https://doi.org/10.1016/j.est.2023.107395.
[43] Phukhrongthung, A.; Iamprasertkun, P.; Bunpheng, A.; Saisopa, T.; Umpuch, C.; Puchongkawarin, C.; Sawangphruk, M.; Luanwuthi, S. Oil Palm Leaf-Derived Hierarchical Porous Carbon for “Water-in-Salt” Based Supercapacitors: The Effect of Anions (Cl− and TFSI−) in Superconcentrated Conditions. RSC Adv, 2023, 13 (35), 24432–24444. https://doi.org/10.1039/d3ra03152g.
[44] Mujtaba, Z.; Arshad, N. Moringa Oleifera and Its Spent Tea Waste Composites as Sustainable Anode Candidates for Energy Storage Applications: Morphological and Electrochemical Performance Studies. Mater Chem Phys, 2023, 301. https://doi.org/10.1016/j.matchemphys.2023.127576.
[45] Wang, B.; Li, Y.; Gu, Z.; Wang, H.; Liu, X.; Li, S.; Chen, X.; Liang, X.; Ogino, K.; Si, H. Biomass-Derived Hierarchically Porous Carbon-Supported MnOx Enable Fast Ion/Electron Transport at High Operating Voltages. Fuel Processing Technology, 2023, 249. https://doi.org/10.1016/j.fuproc.2023.107857.
[46] Inayat, A.; Albalawi, K.; Rehman, A. ur; Adnan; Saad, A. Y.; Saleh, E. A. M.; Alamri, M. A.; El-Zahhar, A. A.; Haider, A.; Abbas, S. M. Tunable Synthesis of Carbon Quantum Dots from the Biomass of Spent Tea Leaves as Supercapacitor Electrode. Mater Today Commun, 2023, 34. https://doi.org/10.1016/j.mtcomm.2023.105479.
[47] Kumari, R.; Kharangarh, P. R.; Singh, V.; Jha, R.; Ravi Kant, C. Sequential Processing of Nitrogen-Rich, Biowaste-Derived Carbon Quantum Dots Combined with Strontium Cobaltite for Enhanced Supercapacitive Performance. J Alloys Compd, 2023, 969. https://doi.org/10.1016/j.jallcom.2023.172256.
[48] Tyagi, A.; Mishra, K.; Shukla, V. K. Optimization of Sesamum Indicum Oil (Sesame Oil) Derived Activated Carbon Soot for Electric Double-Layer Capacitor (EDLC) Application. Biomass Convers Biorefin, 2023. https://doi.org/10.1007/s13399-023-04121-z.
[49] Patil, A. V.; Sawant, S. A.; Sonkawade, R. G.; Vhatkar, R. S. Green Synthesized Carbon Aerogel for Electric Double Layer Capacitor. J Energy Storage, 2023, 72. https://doi.org/10.1016/j.est.2023.108533.
[50] Mohammed, A. A.; Panda, P. K.; Hota, A.; Tripathy, B. C.; Basu, S. Flexible Asymmetric Supercapacitor Based on Hyphaene Fruit Shell-Derived Multi-Heteroatom Doped Carbon and NiMoO4@NiCo2O4 Hybrid Structure Electrodes. Biomass Bioenergy, 2023, 179. https://doi.org/10.1016/j.biombioe.2023.106981.
[51] Said, B.; Bacha, O.; Rahmani, Y.; Harfouche, N.; Kheniche, H.; Zerrouki, D.; Belkhalfa, H.; Henni, A. Activated Carbon Prepared by Hydrothermal Pretreatment-Assisted Chemical Activation of Date Seeds for Supercapacitor Application. Inorg Chem Commun, 2023, 155. https://doi.org/10.1016/j.inoche.2023.111012.
[52] Yan, B.; Zhao, W.; Zhang, Q.; Kong, Q.; Chen, G.; Zhang, C.; Han, J.; Jiang, S.; He, S. One Stone for Four Birds: A “Chemical Blowing” Strategy to Synthesis Wood-Derived Carbon Monoliths for High-Mass Loading Capacitive Energy Storage in Low Temperature. J Colloid Interface Sci, 2024, 653, 1526–1538. https://doi.org/10.1016/j.jcis.2023.09.179.
[53] Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Zhang, C.; Ding, Y.; Han, J.; Jiang, S.; He, S. In Situ Growth of N/O-Codoped Carbon Nanotubes in Wood-Derived Thick Carbon Scaffold to Boost the Capacitive Performance. Colloids Surf A Physicochem Eng Asp, 2023, 662. https://doi.org/10.1016/j.colsurfa.2023.131018.
[54] Pant, B.; Ojha, G. P.; Acharya, J.; Park, M. Preparation, Characterization, and Electrochemical Performances of Activated Carbon Derived from the Flower of Bauhinia Variegata L for Supercapacitor Applications. Diam Relat Mater, 2023, 136. https://doi.org/10.1016/j.diamond.2023.110040.
[55] Liu, C.; Yuan, R.; Yuan, Y.; Hou, R.; Liu, Y.; Ao, W.; Qu, J.; Yu, M.; Song, H.; Dai, J. An Environment-Friendly Strategy to Prepare Oxygen-Nitrogen-Sulfur Doped Mesopore-Dominant Porous Carbons for Symmetric Supercapacitors. Fuel, 2023, 344. https://doi.org/10.1016/j.fuel.2023.128039.
[56] Gnawali, C. L.; Shahi, S.; Manandhar, S.; Shrestha, G. K.; Adhikari, M. P.; Rajbhandari, R.; Pokharel, B. P. Porous Activated Carbon Materials from Triphala Seed Stones for High-Performance Supercapacitor Applications. BIBECHANA, 2023, 20 (1), 10–20. https://doi.org/10.3126/bibechana.v20i1.53432.
[57] You, Z.; Zhao, L.; Zhao, K.; Liao, H.; Wen, S.; Xiao, Y.; Cheng, B.; Lei, S. Highly Tunable Three-Dimensional Porous Carbon Produced from Tea Seed Meal Crop by-Products for High Performance Supercapacitors. Appl Surf Sci, 2023, 607. https://doi.org/10.1016/j.apsusc.2022.155080.
[58] Zhang, Z.; Li, Y.; Yang, X.; Han, E.; Chen, G.; Yan, C.; Yang, X.; Zhou, D.; He, Y. In-Situ Confined Construction of N-Doped Compact Bamboo Charcoal Composites for Supercapacitors. J Energy Storage, 2023, 62. https://doi.org/10.1016/j.est.2023.106954.
[59] Zhang, Z.; Lu, S.; Li, Y.; Song, J.; Han, E.; Wang, H.; He, Y. Promoting Hierarchical Porous Carbon Derived from Bamboo via Copper Doping for High-Performance Supercapacitors. Ind Crops Prod, 2023, 203. https://doi.org/10.1016/j.indcrop.2023.117155.
[60] Qin, Z.; Ye, Y.; Zhang, D.; He, J.; Zhou, J.; Cai, J. One/Two-Step Contribution to Prepare Hierarchical Porous Carbon Derived from Rice Husk for Supercapacitor Electrode Materials. ACS Omega, 2023, 8 (5), 5088–5096. https://doi.org/10.1021/acsomega.2c07932.
[61] Zhang, Z. W.; Lu, C. Y.; Liu, G. H.; Cao, Y. J.; Wang, Z.; Yang, T. ting; Kang, Y. H.; Wei, X. Y.; Bai, H. C. Self-Assembly of Caragana-Based Nanomaterials into Multiple Heteroatom-Doped 3D-Interconnected Porous Carbon for Advanced Supercapacitors. Mater Today Adv, 2023, 19. https://doi.org/10.1016/j.mtadv.2023.100394.
[62] Zhang, Z.; Qing, Y.; Wang, D.; Li, L.; Wu, Y. N-Doped Carbon Fibers Derived from Porous Wood Fibers Encapsulated in a Zeolitic Imidazolate Framework as an Electrode Material for Supercapacitors. Molecules, 2023, 28 (7). https://doi.org/10.3390/molecules28073081.
[63] Zhao, Y.; Wang, Y.; Liu, Y.; Wang, H. Preparation of Hierarchical Porous Carbon through One-Step KOH Activation of Coconut Shell Biomass for High-Performance Supercapacitor. 2022. https://doi.org/10.21203/rs.3.rs-1895857/v1.
[64] Li, Y.; Qi, B. Secondary Utilization of Jujube Shell Bio-Waste into Biomass Carbon for Supercapacitor Electrode Materials Study. Electrochem commun, 2023, 152. https://doi.org/10.1016/j.elecom.2023.107512.
[65] Bao, Y.; Xu, H.; Zhu, Y.; Chen, P.; Zhang, Y.; Chen, Y. 2,6-Diaminoanthraquinone Anchored on Functionalized Biomass Porous Carbon Boosts Electrochemical Stability for Metal-Free Redox Supercapacitor Electrode. Electrochim Acta, 2023, 437. https://doi.org/10.1016/j.electacta.2022.141533.
[66] Yao, Y.; Xie, T.; Li, P.; Du, W.; Jiang, J.; Ding, H.; Zhao, T.; Xu, G.; Zhang, L. Cheese-like Hierarchical Porous Carbon Material with Large Specific Surface Area Derived from Red Dates for High Performance Supercapacitors. Diam Relat Mater, 2023, 138. https://doi.org/10.1016/j.diamond.2023.110169.
[67] Hu, Y.; Ouyang, J.; Xiong, W.; Wang, R.; Lu, Y.; Yin, W.; Fan, Y.; Li, Z.; Du, K.; Li, X.; et al. A 3D Stacked Corrugated Pore Structure Composed of CoNiO2 and Polyaniline within the Tracheids of Wood-Derived Carbon for High-Performance Asymmetric Supercapacitors. J Colloid Interface Sci, 2023, 648, 674–682. https://doi.org/10.1016/j.jcis.2023.05.191.
[68] Geng, Y.; Wang, J.; Chen, X.; Wang, Q.; Zhang, S.; Tian, Y.; Liu, C.; Wang, L.; Wei, Z.; Cao, L.; et al. In Situ N, O-Dually Doped Nanoporous Biochar Derived from Waste Eutrophic Spirulina for High-Performance Supercapacitors. Nanomaterials, 2023, 13 (17). https://doi.org/10.3390/nano13172431.
[69] Wang, S.; Zhou, J.; Zhang, Y.; He, S.; Esakkimuthu, S.; Zhu, K.; Kumar, S.; Lv, G.; Hu, X. Biochar Assisted Cultivation of Chlorella Protothecoides for Adsorption of Tetracycline and Electrochemical Study on Self-Cultured Chlorella Protothecoides. Bioresour Technol, 2023, 389. https://doi.org/10.1016/j.biortech.2023.129810.
[70] Çetin, R.; Arserim, M. A.; Akdemir, M. A Novel Study for Supercapacitor Applications via Corona Discharge Modified Activated Carbon Derived from Dunaliella Salina Microalgae. J Energy Storage, 2023, 72. https://doi.org/10.1016/j.est.2023.108823.
[71] Liu, Y.; Yang, Z.; He, J. Bacterial Assisted Sustainable Production of Three-Dimensional Defective Carbon from Rice Straw for Supercapacitor. Mater Lett, 2023, 352. https://doi.org/10.1016/j.matlet.2023.135188.
[72] Xia, Y.; Zuo, H.; Lv, J.; Wei, S.; Yao, Y.; Liu, Z.; Lin, Q.; Yu, Y.; Yu, W.; Huang, Y. Preparation of Multi-Layered Microcapsule-Shaped Activated Biomass Carbon with Ultrahigh Surface Area from Bamboo Parenchyma Cells for Energy Storage and Cationic Dyes Removal. Journal of Cleaner Production. Elsevier Ltd April 10, 2023. https://doi.org/10.1016/j.jclepro.2023.136517.
[73] Nagaraju, Y. S.; Ganesh, H.; Veeresh, S.; Vijeth, H.; Devendrappa, H. A Strategy of Making Waste Profitable: Self-Templated Synthesis of Helical Rod Structured Porous Carbon Derived from Ganoderma Lucidem for Advanced Supercapacitor Electrode. Diam Relat Mater, 2023, 131. https://doi.org/10.1016/j.diamond.2022.109607.
[74] Zou, X.; Dong, C.; Jin, Y.; Wang, D.; Li, L.; Wu, S.; Xu, Z.; Chen, Y.; Li, Z.; Yang, H. Engineering of N, P Co-Doped Hierarchical Porous Carbon from Sugarcane Bagasse for High-Performance Supercapacitors and Sodium Ion Batteries. Colloids Surf A Physicochem Eng Asp, 2023, 672. https://doi.org/10.1016/j.colsurfa.2023.131715.
[75] He, X.; Li, W.; Xia, Y.; Huang, H.; Xia, X.; Gan, Y.; Zhang, J.; Zhang, W. Pivotal Factors of Wood-Derived Electrode for Supercapacitor: Component Striping, Specific Surface Area and Functional Group at Surface. Carbon N Y, 2023, 210. https://doi.org/10.1016/j.carbon.2023.118090.
[76] Du, X.; Lin, Z.; Zhang, Y.; Li, P. Microstructural Tailoring of Porous Few-Layer Graphene-like Biochar from Kitchen Waste Hydrolysis Residue in Molten Carbonate Medium: Structural Evolution and Conductive Additive-Free Supercapacitor Application. Science of the Total Environment, 2023, 871. https://doi.org/10.1016/j.scitotenv.2023.162045.
[77] Xuan, X.; Wang, M.; You, W.; Manickam, S.; Tao, Y.; Yoon, J. Y.; Sun, X. Hydrodynamic Cavitation-Assisted Preparation of Porous Carbon from Garlic Peels for Supercapacitors. Ultrason Sonochem, 2023, 94. https://doi.org/10.1016/j.ultsonch.2023.106333.
[78] Tian, X. L.; Yu, J. H.; Qiu, L.; Zhu, Y. H.; Zhu, M. Q. Structural Changes and Electrochemical Properties of Mesoporous Activated Carbon Derived from Eucommia Ulmoides Wood Tar by KOH Activation for Supercapacitor Applications. Ind Crops Prod, 2023, 197. https://doi.org/10.1016/j.indcrop.2023.116628.
[79] Meng, X.; Zhang, D.; Wang, B.; He, Y.; Xia, X.; Yang, B.; Han, Z. Biomass-Derived Phosphorus-Doped Hierarchical Porous Carbon Fabricated by Microwave Irritation under Ambient Atmosphere with High Supercapacitance Performance in Trifluoroacetic Acid Electrolyte. J Energy Storage, 2023, 57. https://doi.org/10.1016/j.est.2022.106345.
[80] Wang, X.; Wang, Y.; Yan, L.; Wang, Q.; Li, J.; Zhong, X.; Liu, Q.; Li, Q.; Cui, S.; Xie, G. From Pollutant to High-Performance Supercapacitor: Semi-Coking Wastewater Derived N–O–S Self-Doped Porous Carbon. Colloids Surf A Physicochem Eng Asp, 2023, 657. https://doi.org/10.1016/j.colsurfa.2022.130596.
[81] Chen, X.; Zhao, C.; Ma, J.; Sun, X. Multifunctional Porous Carbon Materials with Excellent Supercapacitor Performance and Oxygen Reduction Properties Derived from Pomelo Peel.
[82] Ma, C.; Li, W.; Cheng, H.; Li, Z.; He, G. Biochar for Supercapacitor Electrodes: Mechanisms in Aqueous Electrolytes.
[83] Yao, W.; Zheng, D.; Li, Z.; Wang, Y.; Tan, H.; Zhang, Y. MXene@ Carbonized Wood Monolithic Electrode with Hierarchical Porous Framework for High-Performance Supercapacitors. Appl Surf Sci, 2023, 638. https://doi.org/10.1016/j.apsusc.2023.158130.
[84] Wu, W.; Zheng, H.; Zhang, Y.; Wang, Q.; Huang, W.; Xiang, J.; Yang, X.; Lu, W.; Zhang, Z.; Wang, S. Preparation of High Performance Supercapacitors with Nitrogen and Oxygen Self-Doped Porous Carbon Derived from Wintersweet-Fruit-Shell. Journal of Physics and Chemistry of Solids, 2023, 177. https://doi.org/10.1016/j.jpcs.2023.111274.
[85] Tian, W.; Ren, P.; Wang, J.; Hou, X.; Sun, A.; Jin, Y.; Chen, Z. Facile Synthesis of Dense Porous Carbon Derived from Linum Usitatissimum L. Root for High Mass Loading Supercapacitors. J Energy Storage, 2023, 63. https://doi.org/10.1016/j.est.2023.107039.
[86] Tian, W.; Ren, P.; Hou, X.; Guo, Z.; Xue, R.; Chen, Z.; Jin, Y. Biomass Derived N/O Self-Doped Porous Carbon for Advanced Supercapacitor Electrodes. Ind Crops Prod, 2023, 202. https://doi.org/10.1016/j.indcrop.2023.117032.
[87] Zhu, W.; Shen, D.; Xie, H. Combination of Chemical Activation and Nitrogen Doping toward Hierarchical Porous Carbon from Houttuynia Cordata for Supercapacitors. J Energy Storage, 2023, 60. https://doi.org/10.1016/j.est.2022.106595.
[88] Goodwin, V.; Jitreewas, P.; Sesuk, T.; Limthongkul, P.; Charojrochkul, S. Development of Modified Mesoporous Carbon from Palm Oil Biomass for Energy Storage Supercapacitor Application. In IOP Conference Series: Earth and Environmental Science; Institute of Physics, 2023; Vol. 1199. https://doi.org/10.1088/1755-1315/1199/1/012003.
[89] Wang, T.; Peng, L.; Wu, D.; Chen, B.; Jia, B. Crude Fiber and Protein Rich Cottonseed Meal Derived Carbon Quantum Dots Composite Porous Carbon for Supercapacitor. J Alloys Compd, 2023, 947. https://doi.org/10.1016/j.jallcom.2023.169499.
[90] Meekati, T.; Pakawatpanurut, P.; Amornsakchai, T.; Meethong, N.; Sodtipinta, J. High-Performance Activated Carbon Fiber Derived from Pineapple Leaf Fiber via Co(II)-Assisted Preparation Revealed Surprising Capacitive-Pseudocapacitive Synergistic Charge Storage. J Energy Storage, 2023, 71. https://doi.org/10.1016/j.est.2023.108135.
[91] Nguyen, T. B.; Yoon, B.; Nguyen, T. D.; Oh, E.; Ma, Y.; Wang, M.; Suhr, J. A Facile Salt-Templating Synthesis Route of Bamboo-Derived Hierarchical Porous Carbon for Supercapacitor Applications. Carbon N Y, 2023, 206, 383–391. https://doi.org/10.1016/j.carbon.2023.02.060.
[92] Salheen, S. A.; Nassar, H. F.; Dsoke, S.; El-Deen, A. G. Constructing Ultraporous Activated Hollow Carbon Nanospheres Derived from Rotten Grapes for Boosting Energy Density and Lifespan Supercapacitors. Colloids Surf A Physicochem Eng Asp, 2023, 660. https://doi.org/10.1016/j.colsurfa.2022.130821.
[93] Rajasekaran, S. J.; Grace, A. N.; Jacob, G.; Alodhayb, A.; Pandiaraj, S.; Raghavan, V. Investigation of Different Aqueous Electrolytes for Biomass-Derived Activated Carbon-Based Supercapacitors. Catalysts, 2023, 13 (2). https://doi.org/10.3390/catal13020286.
[94] Bhosale, S. R.; Bhosale, R. R.; Shinde, S. B.; Moyo, A. A.; Dhavale, R. P.; Kolekar, S. S.; Anbhule, P. V. Biomass Nanoarchitectonics with Annona Reticulate Flowers for Mesoporous Carbon Impregnated on CeO2 Nanogranular Electrode for Energy Storage Application. Inorg Chem Commun, 2023, 154. https://doi.org/10.1016/j.inoche.2023.110949.
[95] Siva Priya, D.; Kennedy, L. J.; Anand, G. T. Engineering the Pongamia Pinnata Oil Pressed Residue Derived Porous Carbon for Symmetric Supercapacitor Application.
[96] Qin, S.; Liu, P.; Wang, J.; Liu, C.; Zhang, S.; Tian, Y.; Zhang, F.; Wang, L.; Cao, L.; Zhang, J.; et al. In Situ N, O Co-Doped Nanoporous Carbon Derived from Mixed Egg and Rice Waste as Green Supercapacitor. Molecules, 2023, 28 (18). https://doi.org/10.3390/molecules28186543.
[97] Bhat, S.; Uthappa, U. T.; Sadhasivam, T.; Altalhi, T.; Soo Han, S.; Kurkuri, M. D. Abundant Cilantro Derived High Surface Area Activated Carbon (AC) for Superior Adsorption Performances of Cationic/Anionic Dyes and Supercapacitor Application. Chemical Engineering Journal, 2023, 459. https://doi.org/10.1016/j.cej.2023.141577.
[98] Rawat, S.; Boobalan, T.; Sathish, M.; Hotha, S.; Thallada, B. Utilization of CO2 Activated Litchi Seed Biochar for the Fabrication of Supercapacitor Electrodes. Biomass Bioenergy, 2023, 171. https://doi.org/10.1016/j.biombioe.2023.106747.
[99] Jiao, S.; Yao, Y.; Zhang, J.; Zhang, L.; Li, C.; Zhang, H.; Zhao, X.; Chen, H.; Jiang, J. Nano-Flower-like Porous Carbon Derived from Soybean Straw for Efficient N-S Co-Doped Supercapacitors by Coupling in-Situ Heteroatom Doping with Green Activation Method. Appl Surf Sci, 2023, 615. https://doi.org/10.1016/j.apsusc.2023.156365.
[100] Ma, R.; Luo, W.; Yan, L.; Guo, C.; Ding, X.; Gong, X.; Jia, D.; Xu, M.; Ai, L.; Guo, N.; et al. Constructing the Quinonyl Groups and Structural Defects in Carbon for Supercapacitor and Capacitive Deionization Applications. J Colloid Interface Sci, 2023, 645, 685–693. https://doi.org/10.1016/j.jcis.2023.04.119.
[101] Jiang, R.; Zhou, C.; Yang, Y.; Zhu, S.; Li, S.; Zhou, J.; Li, W.; Ding, L. Rice Straw-Derived Activated Carbon/Nickel Cobalt Sulfide Composite for High Performance Asymmetric Supercapacitor. Diam Relat Mater, 2023, 139. https://doi.org/10.1016/j.diamond.2023.110322.
[102] Mehdi, R.; Naqvi, S. R.; Khoja, A. H.; Hussain, R. Biomass Derived Activated Carbon by Chemical Surface Modification as a Source of Clean Energy for Supercapacitor Application. Fuel, 2023, 348. https://doi.org/10.1016/j.fuel.2023.128529.
[103] Dubey, P.; Maheshwari, P. H.; Mansi; Shrivastav, V.; Sundriyal, S. Effect of Nitrogen and Sulphur Co-Doping on the Surface and Diffusion Characteristics of Date Seed-Derived Porous Carbon for Asymmetric Supercapacitors. J Energy Storage, 2023, 58. https://doi.org/10.1016/j.est.2022.106441.
[104] Atchudan, R.; Perumal, S.; Sundramoorthy, A. K.; Manoj, D.; Kumar, R. S.; Almansour, A. I.; Lee, Y. R. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium Occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. Nanomaterials, 2023, 13 (10). https://doi.org/10.3390/nano13101654.
[105] Qin, Q.; Zhong, F.; Song, T.; Yang, Z.; Zhang, P.; Cao, H.; Niu, W.; Yao, Z. Optimization of Multiscale Structure and Electrochemical Properties of Bamboo-Based Porous Activated Biochar by Coordinated Regulation of Activation and Air Oxidation. Chemical Engineering Journal, 2023, 477. https://doi.org/10.1016/j.cej.2023.146763.
[106] Numee, P.; Sangtawesin, T.; Yilmaz, M.; Kanjana, K. Activated Carbon Derived from Radiation-Processed Durian Shell for Energy Storage Application. Carbon Resources Conversion, 2023. https://doi.org/10.1016/j.crcon.2023.07.001.
[107] Qi, P.; Su, Y.; Yang, L.; Wang, J.; Jiang, M.; Sun, X.; Zhang, P.; Xiong, Y. Nanoarchitectonics of Hierarchical Porous Carbon Based on Carbonization of Heavy Fraction of Bio-Oil and Its Supercapacitor Performance. J Energy Storage, 2023, 74. https://doi.org/10.1016/j.est.2023.109398.
[108] Ozpinar, P.; Dogan, C.; Demiral, H.; Morali, U.; Erol, S.; Yildiz, D.; Samdan, C.; Demiral, I. Effect of Binder on the Electrochemical Performance of Activated Carbon Electrodes Obtained from Waste Hazelnut Shells: Comparison of PTFE and PVDF. Diam Relat Mater, 2023, 137. https://doi.org/10.1016/j.diamond.2023.110092.
[109] Benwannamas, N.; Sangtawesin, T.; Yilmaz, M.; Kanjana, K. Gamma-Induced Interconnected Networks in Microporous Activated Carbons from Palm Petiole under NaNO3 Oxidizing Environment towards High-Performance Electric Double Layer Capacitors (EDLCs). Sci Rep, 2023, 13 (1). https://doi.org/10.1038/s41598-023-40176-8.
[110] Kumaresan, N.; Alsalhi, M. S.; Karuppasamy, P.; Praveen Kumar, M.; Pandian, M. S.; Arulraj, A.; Peera, S. G.; Mangalaraja, R. V.; Devanesan, S.; Ramasamy, P.; et al. Nitrogen Implanted Carbon Nanosheets Derived from Acorus Calamus as an Efficient Electrode for the Supercapacitor Application. Molecular Catalysis, 2023, 538. https://doi.org/10.1016/j.mcat.2023.112978.
[111] Karakehya, N. Effects of One-Step and Two-Step KOH Activation Method on the Properties and Supercapacitor Performance of Highly Porous Activated Carbons Prepared from Lycopodium Clavatum Spores. Diam Relat Mater, 2023, 135. https://doi.org/10.1016/j.diamond.2023.109873.
[112] Gouda, M. S.; Shehab, M.; Helmy, S.; Soliman, M.; Salama, R. S. Nickel and Cobalt Oxides Supported on Activated Carbon Derived from Willow Catkin for Efficient Supercapacitor Electrode. J Energy Storage, 2023, 61. https://doi.org/10.1016/j.est.2023.106806.
[113] Gouda, M. S.; Shehab, M.; Soliman, M. M.; Helmy, S.; Salama, R. S. Preparation and Characterization of Supercapacitor Electrodes Utilizing Catkin Plant as an Activated Carbon Source; 2023.
[114] Pallavolu, M. R.; Prabhu, S.; Nallapureddy, R. R.; Kumar, A. S.; Banerjee, A. N.; Joo, S. W. Bio-Derived Graphitic Carbon Quantum Dot Encapsulated S- and N-Doped Graphene Sheets with Unusual Battery-Type Behavior for High-Performance Supercapacitor. Carbon N Y, 2023, 202, 93–102. https://doi.org/10.1016/j.carbon.2022.10.077.
[115] Jalalah, M.; Han, H. S.; Mahadani, M.; Nayak, A. K.; Harraz, F. A. Novel Interconnected Hierarchical Porous Carbon Derived from Biomass for Enhanced Supercapacitor Application. Journal of Electroanalytical Chemistry, 2023, 935. https://doi.org/10.1016/j.jelechem.2023.117355.
[116] Wang, M. xi; He, D.; Zhu, M.; Wu, L.; Wang, Z.; Huang, Z. H.; Yang, H. Green Fabrication of Hierarchically Porous Carbon Microtubes from Biomass Waste via Self-Activation for High-Energy-Density Supercapacitor. J Power Sources, 2023, 560. https://doi.org/10.1016/j.jpowsour.2023.232703.
[117] Merin, P.; Jimmy Joy, P.; Muralidharan, M. N.; Veena Gopalan, E.; Seema, A. Biomass-Derived Activated Carbon for High-Performance Supercapacitor Electrode Applications. Chem Eng Technol, 2021, 44 (5), 844–851. https://doi.org/10.1002/ceat.202000450.
[118] Ma, M.; Zhang, J.; Huan, Y.; Ren, M.; Wei, T.; Yan, S. 3D Stack Tubular Mesoporous Carbon Derived from Discarded Sesame Capsule Shells for High-Performance Supercapacitors. Diam Relat Mater, 2023, 131. https://doi.org/10.1016/j.diamond.2022.109562.
[119] J.E., M.; Chandewar, P. R.; Shee, D.; Sankar Mal, S. Phosphomolybdic Acid Embedded into Biomass-Derived Biochar Carbon Electrode for Supercapacitor Applications. Journal of Electroanalytical Chemistry, 2023, 936. https://doi.org/10.1016/j.jelechem.2023.117354.
[120] Liu, D.; Xu, G.; Yuan, X.; Ding, Y.; Fan, B. Pore Size Distribution Modulation of Waste Cotton-Derived Carbon Materials via Citrate Activator to Boost Supercapacitive Performance. Fuel, 2023, 332. https://doi.org/10.1016/j.fuel.2022.126044.
[121] Lei, D.; Zeng, Y.; Zhong, J.; Chen, J.; Ye, Y.; Wang, W. Ultra-High Specific Surface Area Porous Carbons Derived from Chinese Medicinal Herbal Residues with Potential Applications in Supercapacitors and CO2 Capture. Colloids Surf A Physicochem Eng Asp, 2023, 666. https://doi.org/10.1016/j.colsurfa.2023.131327.
[122] Bejjanki, D.; Banothu, P.; Kumar, V. B.; Kumar, P. S. Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material. C-Journal of Carbon Research, 2023, 9 (1). https://doi.org/10.3390/c9010024.
[123] Zeng, F.; Meng, Z.; Xu, Z.; Xu, J.; Shi, W.; Wang, H.; Hu, X.; Tian, H. Biomass-Derived Porous Activated Carbon for Ultra-High Performance Supercapacitor Applications and High Flux Removal of Pollutants from Water. Ceram Int, 2023, 49 (10), 15377–15386. https://doi.org/10.1016/j.ceramint.2023.01.122.
[124] Abdallah, F.; Arthur, E. K.; Mensah-Darkwa, K.; Gikunoo, E.; Baffour, S. A.; Agamah, B. A.; Nartey, M. A.; Agyemang, F. O. Electrochemical Performance of Corncob-Derived Activated Carbon-Graphene Oxide and TiO2 Ternary Composite Electrode for Supercapacitor Applications. J Energy Storage, 2023, 68. https://doi.org/10.1016/j.est.2023.107776.
[125] Deng, F.; Li, Y.; Zhang, Y.; Zhang, Q.; Li, Y.; Shang, J.; Wang, J.; Gao, R.; Li, R. A Popcorn-Derived Porous Carbon Optimized by Thermal Treatment and Its Outstanding Electrochemical Performance. J Energy Storage, 2023, 60. https://doi.org/10.1016/j.est.2023.106668.
[126] Darjazi, H.; Bottoni, L.; Moazami, H. R.; Rezvani, S. J.; Balducci, L.; Sbrascini, L.; Staffolani, A.; Tombesi, A.; Nobili, F. From Waste to Resources: Transforming Olive Leaves to Hard Carbon as Sustainable and Versatile Electrode Material for Li/Na-Ion Batteries and Supercapacitors. Materials Today Sustainability, 2023, 21. https://doi.org/10.1016/j.mtsust.2022.100313.
[127] Zhang, P.; Li, Y.; Wang, M.; Zhang, D.; Ouyang, W.; Liu, L.; Wang, M.; Zhang, K.; Wang, H.; Chen, C. Self-Doped (N/O/S) Nanoarchitectonics of Hierarchically Porous Carbon from Palm Flower for High-Performance Supercapacitors. Diam Relat Mater, 2023, 136. https://doi.org/10.1016/j.diamond.2023.109976.
[128] Selvaraj, M.; Balamoorthy, E.; Manivasagam, T. G. Biomass Derived Nitrogen-Doped Activated Carbon and Novel Biocompatible Gel Electrolytes for Solid-State Supercapacitor Applications. J Energy Storage, 2023, 72. https://doi.org/10.1016/j.est.2023.108543.
[129] Tamasauskaite-Tamasiunaite, L.; Jablonskienė, J.; Šimkūnaitė, D.; Volperts, A.; Plavniece, A.; Dobele, G.; Zhurinsh, A.; Jasulaitiene, V.; Niaura, G.; Drabavicius, A.; et al. Black Liquor and Wood Char-Derived Nitrogen-Doped Carbon Materials for Supercapacitors. Materials, 2023, 16 (7). https://doi.org/10.3390/ma16072551.
[130] Qiu, L.; Guo, R.; Ma, X.; Li, J. Fabrication of Hierarchical Porous Biomass-Based Carbon Aerogels from Liqueed Wood for Supercapacitor Applications. 2023. https://doi.org/10.21203/rs.3.rs-2596680/v1.
[131] Feng, L.; Yan, B.; Zheng, J.; Zhang, Q.; Wei, R.; Zhang, C.; Han, J.; Jiang, S.; He, S. Chemical Foaming-Assisted Synthesis of N, O Co-Doped Hierarchical Porous Carbon from Soybean Protein for High Rate Performance Supercapacitors. Diam Relat Mater, 2023, 133. https://doi.org/10.1016/j.diamond.2023.109767.
[132] Li, K.; Liu, Z.; Ma, X.; Feng, Q.; Wang, D.; Ma, D. A Combination of Heteroatom Doping Engineering Assisted by Molten Salt and KOH Activation to Obtain N and O Co-Doped Biomass Porous Carbon for High Performance Supercapacitors. J Alloys Compd, 2023, 960. https://doi.org/10.1016/j.jallcom.2023.170785.
[133] Liang, K.; Chen, Y.; Wang, S.; Wang, D.; Wang, W.; Jia, S.; Mitsuzakic, N.; Chen, Z. Peanut Shell Waste Derived Porous Carbon for High-Performance Supercapacitors. J Energy Storage, 2023, 70. https://doi.org/10.1016/j.est.2023.107947.
[134] Januszewicz, K.; Kazimierski, P.; Cymann-Sachajdak, A.; Hercel, P.; Barczak, B.; Wilamowska-Zawłocka, M.; Kardaś, D.; Łuczak, J. Conversion of Waste Biomass to Designed and Tailored Activated Chars with Valuable Properties for Adsorption and Electrochemical Applications. Environmental Science and Pollution Research, 2023, 30 (43), 96977–96992. https://doi.org/10.1007/s11356-023-28824-y.
[135] Manoharan, K.; Sundaram, R.; Raman, K. Preparation and Characterization of Hydrogen Storage Medium (IMO/TPAC) and Asymmetric Supercapacitor (IMO/TPAC‖TPAC) Using Imogolite (IMO) and Biomass Derived Activated Carbon from Tangerine Peel (TPAC) for Renewable Energy Storage Applications. Int J Hydrogen Energy, 2023, 48 (74), 28694–28711. https://doi.org/10.1016/j.ijhydene.2023.04.076.
[136] Vignesh, K.; Ganeshbabu, M.; Puneeth, N. P. N.; Mathivanan, T.; Ramkumar, B.; Lee, Y. S.; Selvan, R. K. Oxygen-Rich Functionalized Porous Carbon by KMnO4 Activation on Pods of Prosopis Juliflora for Symmetric Supercapacitors. J Energy Storage, 2023, 72. https://doi.org/10.1016/j.est.2023.108216.
[137] Vengadesan, K.; Madaswamy, S. L.; Natarajan, V. K.; Dhanusuraman, R. Biocarbon Derived from Seeds of Palmyra Palm Tree for a Supercapacitor Application. Advanced Nano Research, 2023, 6 (1), 1–10. https://doi.org/10.21467/anr.6.1.1-10.
[138] Zhang, J.; Jiao, S.; Luo, H.; Gao, M.; Li, C.; Zhang, H.; Kong, F.; Zhao, X.; Chen, H.; Jiang, J. Fabrication of 3D Self-Supporting Hierarchical Poplar-Based Thick Carbon Electrode via Coupling Delignification and Gradient Carbonization for Electrochemical Performance. J Power Sources, 2023, 562. https://doi.org/10.1016/j.jpowsour.2023.232787.
[139] Jia, J.; Yao, Z.; Zhao, L.; Xie, T.; Sun, Y.; Tian, L.; Huo, L.; Liu, Z. Functionalization of Supercapacitors Electrodes Oriented Hydrochar from Cornstalk: A New Vision via Biomass Fraction. Biomass Bioenergy, 2023, 175. https://doi.org/10.1016/j.biombioe.2023.106858.
[140] Tu, J.; Qiao, Z.; Wang, Y.; Li, G.; Zhang, X.; Li, G. American Ginseng Biowaste-Derived Activated Carbon for High-Performance Supercapacitors. Int J Electrochem Sci, 2023, 18 (2), 16–24. https://doi.org/10.1016/j.ijoes.2023.01.011.
[141] Liao, H.; Zhong, L.; Deng, Y.; Chen, H.; Liao, G.; Xiao, Y.; Cheng, B.; Lei, S. A Systematic Study on Equisetum Ramosissimum Desf. Derived Honeycomb Porous Carbon for Supercapacitors: Insight into the Preparation-Structure-Performance Relationship. Appl Surf Sci, 2023, 623. https://doi.org/10.1016/j.apsusc.2023.157010.
[142] Liu, H.; Huang, X.; Zhou, M.; Gu, J.; Xu, M.; Jiang, L.; Zheng, M.; Li, S.; Miao, Z. Efficient Conversion of Biomass Waste to N/O Co-Doped Hierarchical Porous Carbon for High Performance Supercapacitors. J Anal Appl Pyrolysis, 2023, 169. https://doi.org/10.1016/j.jaap.2022.105844.
[143] Su, H.; Lan, C.; Wang, Z.; Zhu, L.; Zhu, M. Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers (Basel), 2023, 15 (3). https://doi.org/10.3390/polym15030663.
[144] Liu, H.; Wang, Y.; Lv, L.; Liu, X.; Wang, Z.; Liu, J. Oxygen-Enriched Hierarchical Porous Carbons Derived from Lignite for High-Performance Supercapacitors. Energy, 2023, 269. https://doi.org/10.1016/j.energy.2023.126707.
[145] Inal, I. I. G.; Koyuncu, F.; Güzel, F. Investigating the Surface Properties of Red Pepper Industrial Waste-Based Activated Carbons for Use as Reversible Supercapacitor Electrodes. Diam Relat Mater, 2023, 138. https://doi.org/10.1016/j.diamond.2023.110212.
[146] Li, K.; Nan, D. hong; Li, Z. yu; Xie, J. heng; Ma, S. wei; Huang, Y. qin; Lu, Q. Preparation and Optimization of Nitrogen-Doped Porous Carbon Derived from Bio-Oil Distillation Residue for High-Performance Supercapacitors. J Energy Storage, 2023, 57. https://doi.org/10.1016/j.est.2022.106219.
[147] Li, L.; Wei, X. Y.; Shao, C. W.; Yin, F.; Sun, B. K.; Liu, F. J.; Li, J. H.; Liu, Z. Q.; Zong, Z. M. Honeycomb-like N/O Self-Doped Hierarchical Porous Carbons Derived from Low-Rank Coal and Its Derivatives for High-Performance Supercapacitor. Fuel, 2022, 331. https://doi.org/10.1016/j.fuel.2022.125658.
[148] Lin, L.; Zheng, Z.; Li, X.; Park, S.; Zhang, W.; Diao, G.; Piao, Y. Design Strategy for Porous Carbon Nanomaterials from Rational Utilization of Natural Rubber Latex Foam Scraps. Ind Crops Prod, 2023, 192. https://doi.org/10.1016/j.indcrop.2022.116036.
[149] Zhou, Q.; Li, H.; Jia, B.; Dang, Y.; Zhang, G. One-Pot Synthesis of Porous Carbon from Chinese Medicine Residues Driven by Potassium Citrate and Application in Supercapacitors. J Anal Appl Pyrolysis, 2023, 170. https://doi.org/10.1016/j.jaap.2023.105894.
[150] Xu, Q.; Ni, X.; Chen, S.; Ye, J.; Yang, J.; Wang, H.; Li, D.; Yuan, H. Hierarchically Porous Carbon from Biomass Tar as Sustainable Electrode Material for High-Performance Supercapacitors. Int J Hydrogen Energy, 2023, 48 (66), 25635–25644. https://doi.org/10.1016/j.ijhydene.2023.03.171.
[151] Qin, S.; Liu, P.; Wang, J.; Liu, C.; Wang, Q.; Chen, X.; Zhang, S.; Tian, Y.; Zhang, F.; Wang, L.; et al. In Situ N, O Co-Doped Porous Carbon Derived from Antibiotic Fermentation Residues as Electrode Material for High-Performance Supercapacitors. RSC Adv, 2023, 13 (34), 24140–24149. https://doi.org/10.1039/d3ra04164f.
[152] Meng, X.; Wang, X.; Li, W.; Kong, F.; Zhang, F. Fabrication of N-Doped Porous Carbon with Micro/Mesoporous Structure from Furfural Residue for Supercapacitors. Polymers (Basel), 2023, 15 (19). https://doi.org/10.3390/polym15193976.
[153] Li, Y.; Jia, X.; Li, X.; Liu, P.; Zhang, X.; Guo, M. Study on the Potential of Sludge-Derived Humic Acid as Energy Storage Material. Waste Management, 2023, 162, 55–62. https://doi.org/10.1016/j.wasman.2023.03.015.
[154] Bian, Z.; Wang, H.; Zhao, X.; Ni, Z.; Zhao, G.; Chen, C.; Hu, G.; Komarneni, S. Optimized Mesopores Enable Enhanced Capacitance of Electrochemical Capacitors Using Ultrahigh Surface Area Carbon Derived from Waste Feathers. J Colloid Interface Sci, 2023, 630, 115–126. https://doi.org/10.1016/j.jcis.2022.09.123.
[155] Xue, B.; Xu, J.; Chen, Z.; Xiao, R. Valorizing High-Fraction Bio-Oil to Prepare 3D Interconnected Porous Carbon with Efficient Pore Utilization for Supercapacitor Applications. Fuel Processing Technology, 2023, 239. https://doi.org/10.1016/j.fuproc.2022.107538.
[156] Xue, B.; Xu, J.; Xiao, R. Ice Template-Assisting Activation Strategy to Prepare Biomass-Derived Porous Carbon Cages for High-Performance Zn-Ion Hybrid Supercapacitors. Chemical Engineering Journal, 2023, 454. https://doi.org/10.1016/j.cej.2022.140192.
[157] Liu, B.; Wang, X.; Chen, Y.; Xie, H.; Zhao, X.; Nassr, A. B.; Li, Y. Honeycomb Carbon Obtained from Coal Liquefaction Residual Asphaltene for High-Performance Supercapacitors in Ionic and Organic Liquid-Based Electrolytes. J Energy Storage, 2023, 68. https://doi.org/10.1016/j.est.2023.107826.
[158] Hou, Y.; Sun, Q.; Du, H. Fabrication of Nickel Sulfide/Hierarchical Porous Carbon from Refining Waste for High-Performance Supercapacitor. J Alloys Compd, 2023, 937. https://doi.org/10.1016/j.jallcom.2022.168399.
[159] Gokce, Y. Waste Jean Derived Self N-Containing Activated Carbon as a Potential Electrode Material for Supercapacitors. Turk J Chem, 2023, 47 (4), 789–800. https://doi.org/10.55730/1300-0527.3579.
[160] Chen, Y.; Qin, F.; Wang, Z.; Chen, S.; Cao, Y.; Zhang, S.; Huang, X.; Li, Y. Dense Porous Carbon from Chemical Welding the Oxidized Coal Liquefaction Residue for Enhanced Volumetric Performance Supercapacitors. J Energy Storage, 2023, 72. https://doi.org/10.1016/j.est.2023.108542.
[161] Wang, X.; Liu, B.; Wang, S.; Xie, H.; Zha, Y.; Huang, X.; Santos, D. M. F.; Li, Y. Oxygen Self-Doped Hierarchical Porous Carbons Derived from Coal Liquefaction Residue for High-Performance Supercapacitors in Organic and Ionic Liquid-Based Electrolytes. Colloids Surf A Physicochem Eng Asp, 2023, 669. https://doi.org/10.1016/j.colsurfa.2023.131552.
[162] Brandão, A. T. S. C.; State, S.; Costa, R.; Potorac, P.; Vázquez, J. A.; Valcarcel, J.; Silva, A. F.; Anicai, L.; Enachescu, M.; Pereira, C. M. Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons. ACS Omega, 2023, 8 (21), 18782–18798. https://doi.org/10.1021/acsomega.3c00816.
[163] Brandão, A. T. S. C.; Costa, R.; State, S.; Potorac, P.; Dias, C.; Vázquez, J. A.; Valcarcel, J.; Silva, A. F.; Enachescu, M.; Pereira, C. M. Chitins from Seafood Waste as Sustainable Porous Carbon Precursors for the Development of Eco-Friendly Supercapacitors. Materials, 2023, 16 (6). https://doi.org/10.3390/ma16062332.