Recent advances in the electrode materials for electrocatalytic hydrogen evolution reactions

$40.00

Recent advances in the electrode materials for electrocatalytic hydrogen evolution reactions

Thirugnanam Bavani, Sakthivel Vinith Kumar, Jagannathan Madhavan

The innovative design of electrodes has had a profound impact on the improvement of electrocatalysts for water splitting, paving the way for feasible energy production and hydrogen creation through direct water electrolysis. Electrochemical hydrogen evolution is pivotal for efficient, cost-effective hydrogen generation, yet attaining highly active catalysts with low overpotential (OVP) using affordable materials remains challenging. This chapter assesses diverse electrode materials’ influence and delves into current HER process understanding. It also discusses general electrocatalyst design concepts and compiles recent advances in HER electrocatalyst development. Finally, the chapter offers perspectives on potential directions for future research in this field.

Keywords
Hydrogen Evolution Reaction, Water Splitting Reactions, Electrocatalysis, Green Energy

Published online 10/20/2024, 19 pages

Citation: Thirugnanam Bavani, Sakthivel Vinith Kumar, Jagannathan Madhavan, Recent advances in the electrode materials for electrocatalytic hydrogen evolution reactions, Materials Research Foundations, Vol. 170, pp 41-59, 2024

DOI: https://doi.org/10.21741/9781644903292-3

Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications

References
[1] A. Muzammil, R. Haider, W. Wei, Y. Wan, M. Ishaq, M. Zahid, W. Yaseen, X. Yuan, Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review, Mater. Horiz., 10 (8) (2023) 2764-2799. https://doi.org/10.1039/D3MH00335C
[2] A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction, Int. J. Hydrog. Energy, 44 (36) (2019) 19484-19518. https://doi.org/10.1016/j.ijhydene.2019.05.183
[3] G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review, Adv. Funct.l Mater., 28 (43) (2018) 1803291. https://doi.org/10.1002/adfm.201803291
[4] R.N. Iyer, H.W. Pickering, Mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems, Ann. Rev. Mater. Sci., 20 (1) (1990) 299-338. https://doi.org/10.1146/annurev.ms.20.080190.001503
[5] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44 (15) (2015) 5148-5180. https://doi.org/10.1039/C4CS00448E
[6] A.P. Murthy, J. Theerthagiri, J. Madhavan, Insights on Tafel constant in the analysis of hydrogen evolution reaction, J. Phys. Chem. C, 122 (42) (2018) 23943-23949. https://doi.org/10.1021/acs.jpcc.8b07763
[7] S. Farid, I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers.Manag. 205 (2020) 112182. https://doi.org/10.1016/j.enconman.2019.112182
[8] B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting, Acc. Chem. Res., 51 (7) (2018) 1571-1580. https://doi.org/10.1021/acs.accounts.8b00002
[9] Z.P. Ifkovits, J.M. Evans, M.C. Meier, K.M. Papadantonakis, N.S. Lewis, Decoupled electrochemical water-splitting systems: a review and perspective, Energy Environ. Sci., 14 (9) (2021) 4740-4759. https://doi.org/10.1039/D1EE01226F
[10] Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Recent advances in design of electrocatalysts for high‐current‐density water splitting, Adv. Mater., 34 (16) (2022) 2108133. https://doi.org/10.1002/adma.202108133
[11] M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure, P. Millet, R.D. Braatz, M.Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments, Chem. Soc. Rev., 51 (11) (2022) 4583-4762. https://doi.org/10.1039/D0CS01079K
[12] H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications, Energy Environ. Mater., 6 (5) (2023) e12441. https://doi.org/10.1002/eem2.12441
[13] A.M. Ramírez, S. Heidari, A. Vergara, M.V. Aguilera, P. Preuss, M.B. Camarada, A. Fischer, Rhenium-based electrocatalysts for water splitting, ACS Mater. Au, 3 (3) (2023) 177-200. https://doi.org/10.1021/acsmaterialsau.2c00077
[14] A. Hayat, M. Sohail, H. Ali, T.A. Taha, H.I.A. Qazi, N. Ur Rahman, Z. Ajmal, A. Kalam, A.G. Al‐Sehemi, S. Wageh, M.A. Amin, Recent Advances and Future Perspectives of Metal‐Based Electrocatalysts for Overall Electrochemical Water Splitting, Chem. Record, 23 (2) (2023) e202200149. https://doi.org/10.1002/tcr.202200149
[15] A. Raveendran, M. Chandran, R. Dhanusuraman, A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts, RSC Adv., 13 (6) (2023) 3843-3876. https://doi.org/10.1039/D2RA07642J
[16] M.B. Wazir, M. Daud, S. Safeer, F. Almarzooqi, A. Qurashi, Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications, ACS Omega, 7 (20) (2022) 16856-16865. https://doi.org/10.1021/acsomega.2c00330
[17] T. Altalhi, S.M. Adnan, M.A. Amin (Eds.), Materials for Hydrogen Production, Conversion, and Storage, John Wiley & Sons, 2023.
[18] S. Wang, A. Lu, C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Converg., 8 (2021) 1-23. https://doi.org/10.1186/s40580-020-00251-6
[19] J. Su, J. Zhou, L. Wang, C. Liu, Y. Chen, Synthesis and application of transition metal phosphides as electrocatalyst for water splitting, Sci. Bull., 62 (9) (2017) 633-644. https://doi.org/10.1016/j.scib.2016.12.011
[20] A. Li, Y. Sun, T. Yao, H. Han, Earth‐abundant transition‐metal‐based electrocatalysts for water electrolysis to produce renewable hydrogen, Chem. A Eur. J., 24 (69) (2018) 18334-18355. https://doi.org/10.1002/chem.201803749
[21] Y. Zhang, M. Shi, C. Wang, Y. Zhu, N. Li, X. Pu, A. Yu, J. Zhai, Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media, Sci. Bul., 65 (5) (2020) 359-366. https://doi.org/10.1016/j.scib.2019.12.003
[22] K. Karuppasamy, R. Bose, V.R. Jothi, D. Vikraman, Y.T. Jeong, P. Arunkumar, D.B. Velusamy, T. Maiyalagan, A. Alfantazi, H.S. Kim, High performance, 3D-hierarchical CoS2/CoSe@ C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction, J. Alloy Compd., 838 (2020) 155537. https://doi.org/10.1016/j.jallcom.2020.155537
[23] L. Sun, H. Xu, Z. Cheng, D. Zheng, Q. Zhou, S. Yang, J. Lin, A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction, Chem. Eng. J., 443 (2022) 136348. https://doi.org/10.1016/j.cej.2022.136348
[24] M. Yang, Z. Jin, C. Wang, X. Cao, X. Wang, H. Ma, H. Pang, L. Tan, G. Yang, Fe Foam-Supported FeS2-MoS2 electrocatalyst for N2 reduction under ambient conditions, ACS Appl. Mater. Interfaces, 13 (46) (2021) 55040-55050. https://doi.org/10.1021/acsami.1c16284
[25] L. Wang, H. Wu, S. Xi, S.T. Chua, F. Wang, S.J. Pennycook, Z.G. Yu, Y. Du, J. Xue, Nitrogen-doped cobalt phosphide for enhanced hydrogen evolution activity, ACS Appl. Mater. Interfaces, 11 (19) (2019) 17359-17367. https://doi.org/10.1021/acsami.9b01235
[26] Y. Ni, X. Ma, S. Wang, Y. Wang, F. Song, M. Cao, C. Hu, Heterostructured nickel/vanadium nitrides composites for efficient electrocatalytic hydrogen evolution in neutral medium, J. Power Sources, 521 (2022) 230934. https://doi.org/10.1016/j.jpowsour.2021.230934
[27] Y. Ling, F. Luo, Q. Zhang, K. Qu, L. Guo, H. Hu, Z. Yang, W. Cai, H. Cheng, Tungsten carbide hollow microspheres with robust and stable electrocatalytic activity toward hydrogen evolution reaction, ACS Omega, 4 (2) (2019) 4185-4191. https://doi.org/10.1021/acsomega.8b03449
[28] Y. Tang, C. Yang, M. Sheng, X. Yin, W. Que, Synergistically Coupling phosphorus-doped molybdenum carbide with Mxene as a highly efficient and stable electrocatalyst for hydrogen evolution reaction, ACS Sust. Chem. Eng., 8 (34) (2020) 12990-12998. https://doi.org/10.1021/acssuschemeng.0c03840
[29] O.A. Fakayode, B.A. Yusuf, C. Zhou, Y. Xu, Q. Ji, J. Xie, H. Ma, Simplistic two-step fabrication of porous carbon-based biomass-derived electrocatalyst for efficient hydrogen evolution reaction, Energy Conv. Manag., 227 (2021) 113628. https://doi.org/10.1016/j.enconman.2020.113628
[30] S. Min, Y. Duan, Y. Li, F. Wang, Biomass-derived self-supported porous carbon membrane embedded with Co nanoparticles as an advanced electrocatalyst for efficient and robust hydrogen evolution reaction, Renew. Energy, 155 (2020) 447-455. https://doi.org/10.1016/j.renene.2020.03.164
[31] S. Sekar, A.T.A. Ahmed, D.H. Sim, S. Lee, Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks, Int. J. Hydrogen Energy, 47 (95) (2022) 40317-40326. https://doi.org/10.1016/j.ijhydene.2022.02.233
[32] H.H. Fu, L. Chen, H. Gao, X. Yu, J. Hou, G. Wang, F. Yu, H. Li, C. Fan, Y.L. Shi, X. Guo, Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors, Int. J. Hydrogen Energy, 45 (1) (2020) 443-451. https://doi.org/10.1016/j.ijhydene.2019.10.159
[33] Y. Fu, J. Pan, G. Xiao, J. Niu, W. Fu, J. Wang, Y. Zheng, C. Li, Difunctional hierarchical CoxP QDs-MoS2@ Ni3S2/NF nanostructure as advanced electrocatalyst for water electrolysis, J. Mater. Sci. Mater. Electron., 32 (12) (2021) 16126-16138. https://doi.org/10.1007/s10854-021-06161-5
[34] Y. Liu, X. Zhang, W. Zhang, X. Ge, Y. Wang, X. Zou, X. Zhou, W. Zheng, MXene‐based quantum dots optimize hydrogen production via spontaneous evolution of Cl‐to O‐terminated surface groups, Energy Environ. Mater., (2022) e12438. https://doi.org/10.1002/eem2.12438
[35] L. Huo, B. Liu, Z. Gao, J. Zhang, 0D/2D heterojunctions of molybdenum carbide-tungsten carbide quantum dots/N-doped graphene nanosheets as superior and durable electrocatalysts for hydrogen evolution reaction, J. Mater. Chem. A, 5 (35) (2017) 18494-18501. https://doi.org/10.1039/C7TA02864D
[36] J. Jiang, R. Sun, X. Huang, H. Cong, J. Tang, W. Xu, M. Li, Y. Chen, Y. Wang, S. Han, H. Lin, CoS2 quantum dots modified by ZIF-67 and anchored on reduced graphene oxide as an efficient catalyst for hydrogen evolution reaction, Chem. Eng. J., 430 (2022) 132634. https://doi.org/10.1016/j.cej.2021.132634
[37] P. Kumar, A.P. Murthy, L.S. Bezerra, B.K. Martini, G. Maia, J. Madhavan, Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions, Int. J. Hydrogen Energy, 46 (1) (2021) 622-632. https://doi.org/10.1016/j.ijhydene.2020.09.263
[38] P. Xu, J. Zhang, Z. Ye, Y. Liu, T. Cen, D. Yuan, Co doped Ni0. 85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction, Appl. Surf. Sci., 494 (2019) 749-755. https://doi.org/10.1016/j.apsusc.2019.07.231
[39] R.V. Digraskar, V.S. Sapner, A.V. Ghule, B.R. Sathe, CZTS/MoS2-rGO Heterostructures: an efficient and highly stable electrocatalyst for enhanced hydrogen generation reactions, J. Electroanal. Chem., 882 (2021) 114983. https://doi.org/10.1016/j.jelechem.2021.114983
[40] Q. Sarmad, U.M. Khan, M.M. Baig, M. Hassan, F.A. Butt, A.H. Khoja, R. Liaquat, Z.S. Khan, M. Anwar, M.A. SA, Praseodymium-doped Sr2TiFeO6-δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting, J. Environ. Chem. Eng., 10 (3) (2022) 107609. https://doi.org/10.1016/j.jece.2022.107609
[41] C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, Ultrastable MXene@ Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction, Adv. Funct. Mater., 30 (47) (2020) 2000693. https://doi.org/10.1002/adfm.202000693
[42] J. Zhu, L. Cai, X. Yin, Z. Wang, L. Zhang, H. Ma, Y. Ke, Y. Du, S. Xi, A.T. Wee, Y. Chai, Enhanced electrocatalytic hydrogen evolution activity in single-atom Pt-decorated VS2 nanosheets, ACS Nano, 14 (5) (2020) 5600-5608. https://doi.org/10.1021/acsnano.9b10048
[43] B. Ruqia, S. Choi, Catalytic surface specificity on Pt and Pt-Ni (OH)2 electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nano-scaled electro-catalysts, ChemSusChem, 11 (2018) 2643-2653. https://doi.org/10.1002/cssc.201800781
[44] Y. Yao, Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction, in Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts (pp. 93-116), Singapore: Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0205-5_4
[45] W. Cheng, H. Zhang, D. Luan, X.W. Lou, Exposing unsaturated Cu1-O2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution, Sci. Adv., 7 (18) (2021). https://doi.org/10.1126/sciadv.abg2580
[46] J. Hao, W. Yang, Z. Zhang, J. Tang, Metal-organic frameworks derived CoxFe1−xP nanocubes for electrochemical hydrogen evolution, Nanoscale, 7 (25) (2015) 11055-11062. https://doi.org/10.1039/C5NR01955A
[47] H.H. Do, C.C. Nguyen, D.L.T. Nguyen, S.H. Ahn, S.Y. Kim, Q. Van Le, MOF-derived NiSe2 nanoparticles grown on carbon fiber as a binder-free and efficient catalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 47 (98) (2022) 41587-41595. https://doi.org/10.1016/j.ijhydene.2022.04.127
[48] G. Zhao, B. Wang, Q. Yan, X. Xia, Mo-doping-assisted electrochemical transformation to generate CoFe LDH as the highly efficient electrocatalyst for overall water splitting, J. Alloys Compd., 902 (2022) 163738. https://doi.org/10.1016/j.jallcom.2022.163738
[49] H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction, Appl. Catal. B Environ., 261 (2020) 118240. https://doi.org/10.1016/j.apcatb.2019.118240
[50] Z.H. Zhang, Z.R. Yu, Y. Zhang, A. Barras, A. Addad, P. Roussel, L.C. Tang, M. Naushad, S. Szunerits, R. Boukherroub, Construction of desert rose flower-shaped NiFe LDH-Ni3S2 heterostructures via seawater corrosion engineering for efficient water-urea splitting and seawater utilization, J. Mater. Chem. A, 11 (36) (2023) 19578-19590. https://doi.org/10.1039/D3TA02770H