2D Materials (2DM) based photocatalyst for environmental remediation

$40.00

2D Materials (2DM) based photocatalyst for environmental remediation

R. Roshan Chandrapal, G. Bakiyaraj

Creating a sustainable environment is one of the most important issues facing modern society. Together with an increase in human activity and a rise in per capita income, there has been a noticeable population boom. A growing number of people are becoming concerned about whether the natural resources of our planet will be viable in the long run. In addition, pollution of the air, water, and soil has resulted from industrialization, urbanization, and contemporary farming methods. Given the current situation, widespread exploitation and the widespread presence of hazardous substances are posing growing challenges to the ability of future generations to flourish. Water is separated into hydrogen and oxygen in this process, with the hydrogen being used as fuel. For semiconductor-based photocatalysts and materials to be used effectively in photocatalytic degradation processes for environmental remediation and energy conversion applications, a thorough understanding of their characteristics and behavior is essential. 2DM are an emerging class of nanomaterials with exceptional properties. These composites combine the unique qualities of specific 2DM to create new capabilities. To achieve an increased efficiency, a variety of 2D composites (0D/2D, 1D/2D, 2D/2D, and 3D/2D) are used. Two unique 2D materials that can be stacked to create designer materials with particular properties are graphene and hexagonal boron nitride. Materials derived from 2DM-composite provide exciting prospects in the realm of photocatalysts for the degradation of organic pollutants. Because of their varied uses and customizability, they are at the forefront of developing advanced materials for a range of applications. More groundbreaking 2DM composite with game-changing implications for photocatalysis could be in store.

Keywords
Semiconductor Photocatalyst, 2D Materials, Tunable Bandgap, CO2 Reduction, Pollutant Degradation, Water Splitting

Published online 10/20/2024, 20 pages

Citation: R. Roshan Chandrapal, G. Bakiyaraj, 2D Materials (2DM) based photocatalyst for environmental remediation, Materials Research Foundations, Vol. 170, pp 21-40, 2024

DOI: https://doi.org/10.21741/9781644903292-2

Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications

References
[1] Y. Shi and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev. 45 6 (2016) 1529-1541. https://doi.org/10.1039/C5CS00434A
[2] M. A. Hassaan, M. A. El-Nemr, M. R. Elkatory, S. Ragab, V. C. Niculescu, and A. El Nemr, Principles of photocatalysts and their different applications: a review, Top. Curr. Chem. 381 6 (2023) 31. https://doi.org/10.1007/s41061-023-00444-7
[3] Z. Kuspanov, B. Baglan, A. Baimenov, A. Issadykov, M. Yeleuov, and C. Daulbayev, Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications, Sci. Total Environ. (2023) 163914. https://doi.org/10.1016/j.scitotenv.2023.163914
[4] R. Roshan Chandrapal, S. Bharathkumar, G. Bakiyaraj, V. Ganesh, J. Archana, and M. Navaneethan. Hydrothermally synthesized strontium-modified ZnO hierarchical nanostructured photocatalyst for second-generation fluoroquinolone degradation. Appl. Nanosci. 12 6 (2022) 1869-1884. https://doi.org/10.1007/s13204-022-02414-9
[5] J. Zhang, H. Wu, L. Shi, Z. Wu, S. Zhang, S. Wang, and H. Sun, Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater, Sep. Purif. Tech. 329 (2023) 125225. https://doi.org/10.1016/j.seppur.2023.125225
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, sci. 306 5696 (2004) 666-669. https://doi.org/10.1126/science.1102896
[7] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Mater. Today 20 3 (2017) 116-130. https://doi.org/10.1016/j.mattod.2016.10.002
[8] H. Zhou, J. R. Long, and O. M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112 2 (2012) 673-674. https://doi.org/10.1021/cr300014x
[9] Y. Gogotsi, and B. Anasori, The rise of MXenes, ACS nano 13 8 (2019) 8491-8494. https://doi.org/10.1021/acsnano.9b06394
[10] Y. Li, C. Gao, R. Long, and Y. Xiong, Photocatalyst design based on two-dimensional materials, Mater. Today chem. 11 (2019) 197-216. https://doi.org/10.1016/j.mtchem.2018.11.002
[11] S. K. Chakraborty, B. Kundu, B. Nayak, S. P. Dash, and P. K. Sahoo, Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices, iScience 25 3 (2022) 103942. https://doi.org/10.1016/j.isci.2022.103942
[12] D. S. Schulman, A. J. Arnold, and S. Das, Contact engineering for 2D materials and devices, Chem. Soc. Rev. 47 9 (2018) 3037-3058. https://doi.org/10.1039/C7CS00828G
[13] K. Jiang, and Q. Weng, Miniaturized Energy Storage Devices Based on Two‐Dimensional Materials, ChemSusChem 13 6 (2020) 1420-1446. https://doi.org/10.1002/cssc.201902520
[14] Q. R. H. Deng, P. Li, H. Gomaa, S. Wu, C. An, and N. Hu, Research Progress of transition-metal dichalcogenides for hydrogen evolution reaction, J. Mater. Chem. A 11 (2023) 24434-24453. https://doi.org/10.1039/D3TA04475K
[15] N. Kumar, R. Salehiyan, V. Chauke, O. J. Botlhoko, K. Setshedi, M. Scriba, M. Masukume, and S. S. Ray, Top-down synthesis of graphene: A comprehensive review, FlatChem 27 (2021) 100224. https://doi.org/10.1016/j.flatc.2021.100224
[16] M. Jakhar, A. Kumar, P. K. Ahluwalia, K. Tankeshwar, and R. Pandey, Engineering 2D materials for photocatalytic water-splitting from a theoretical perspective, Mater. 15 6 (2022) 2221. https://doi.org/10.3390/ma15062221
[17] G. Liao, C. Li, S. Liu, B. Fang, and H. Yang, Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications, Phys. Rep. 983 (2022) 1-41. https://doi.org/10.1016/j.physrep.2022.07.003
[18] J. Lipton, G. Weng, J. A. Rӧhr, H. Wang, and A. D. Taylor, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale, Matter 2 5 (2020) 1148-1165. https://doi.org/10.1016/j.matt.2020.03.012
[19] M. I. Nabeel, D. Hussain, N. Ahmad, M. Najam-ul-Haq, and S. G. Musharraf, Recent Advancements in Fabrication and Photocatalytic Applications of Graphitic‎ Carbon Nitride-Tungsten Oxide Nanocomposites, Nanoscale Adv. 5 (2023) 5214-5255. https://doi.org/10.1039/D3NA00159H
[20] X. Li, J. Zhu, and B. Wei, Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications, Chem. Soc. Rev. 45 11 (2016) 3145-3187. https://doi.org/10.1039/C6CS00195E
[21] T. Wang, M. Park, Q. Yu, J. Zhang, and Y. Yang, Stability and synthesis of 2D metals and alloys: a review, Mater. Today Adv. 8 (2020) 100092. https://doi.org/10.1016/j.mtadv.2020.100092
[22] K. Bharathi, K. Sathiyamoorthy, G. Bakiyaraj, J. Archana, and M. Navaneethan. 2D V2O5 nanoflakes on 2D p-gC3N4 nanosheets of heterostructure photocatalysts with the enhanced photocatalytic activity of organic pollutants under direct sunlight, Surf. Interf. 41 (2023) 103219. https://doi.org/10.1016/j.surfin.2023.103219
[23] A. B. Kaul, Two-dimensional layered materials: Structure, properties, and prospects for device applications, J. Mater. Res. 29 3 (2014) 348-361. https://doi.org/10.1557/jmr.2014.6
[24] P. Hess, Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table, Nanoscale Horiz. 6, 11 (2021) 856-892. https://doi.org/10.1039/D1NH00113B
[25] V. Shanmugam, R. A. Mensah, K. Babu, S. Gawusu, A. Chanda, Y. Tu, R. E. Neisiany, M. Försth, G. Sas, and O. Das, A review of the synthesis, properties, and applications of 2D materials, Part. Part. Syst. Charact. 39, no. 6 (2022) 2200031. https://doi.org/10.1002/ppsc.202200031
[26] S. Ahmed, and J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors, Nano-Micro let. 9 (2017) 1-23. https://doi.org/10.1007/s40820-016-0103-7
[27] R. K. Mishra, K. Verma, I. Chianella, H. Y. Nezhad, and S. Goel, Borophene: A 2D Wonder Shaping the Future of Nanotechnology and Materials Science, http://dx.doi.org/10.13140/RG.2.2.30733.51680
[28] Y. Wang, B. Ren, J. Z. Ou, K. Xu, C. Yang, Y. Li, and H. Zhang, Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis, Sci. Bull. 66 12 (2021) 1228-1252. https://doi.org/10.1016/j.scib.2021.02.007
[29] H. Liu, B. Xu, J-M. Liu, J. Yin, F. Miao, C. Duan, and X. G. Wan, Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS 2, Phys. Chem. Chem. Phys. 18 21 (2016) 14222-14227. https://doi.org/10.1039/C6CP01007E
[30] N. Mphuthi, L. Sikhwivhilu, and S. S. Ray, Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: their properties and application in electrochemical sensors, Biosensors 12 6 (2022) 386. https://doi.org/10.3390/bios12060386
[31] Q. Bi, K. Hu, J. Chen, Y. Zhang, M. S. Riaz, J. Xu, Y. Han, and F. Huang, Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction, Appl. Catal. B: Environ. 295 (2021) 120211. https://doi.org/10.1016/j.apcatb.2021.120211
[32] B. Zhang, T. Fan, N. Xie, G. Nie, and H. Zhang, Versatile Applications of Metal Single‐Atom@ 2D Material Nanoplatforms, Adv. Sci. 6 21 (2019) 1901787. https://doi.org/10.1002/advs.201901787
[33] H. Liu, M. Cheng, Y. Liu, J. Wang, G. Zhang, L. Li, L. Du, G. Wang, S. Yang, and X. Wang, Single atoms meet metal-organic frameworks: collaborative efforts for efficient photocatalysis, Energy Environ. Sci. 15 9 (2022) 3722-3749. https://doi.org/10.1039/D2EE01037B
[34] S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh, and V. Mittal, Two-dimensional materials for sensing: graphene and beyond, Electronics 4 3 (2015) 651-687. https://doi.org/10.3390/electronics4030651
[35] N. S. Powar, C. B. Hiragond, D. Bae, and S. In, Two-dimensional metal carbides for electro-and photocatalytic CO2 reduction, J. CO2 Util. 55 (2022) 101814. https://doi.org/10.1016/j.jcou.2021.101814
[36] Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications, Light Sci. Appl. 9 (2020) 190. https://doi.org/10.1038/s41377-020-00421-5
[37] P. Hess, Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table, Nanoscale Horiz.s 6 11 (2021) 856-892. https://doi.org/10.1039/D1NH00113B
[38] H. Yang, B. Yang, W. Chen, and J. Yang, Preparation and photocatalytic activities of TiO2-based composite catalysts, Catalysts 12 10 (2022) 1263. https://doi.org/10.3390/catal12101263
[39] M. Srivastava, S. Banerjee, S. Bairagi, P. Singh, B. Kumar, P. Singh, R. D. Kale, D. M. Mulvihill, and S. Wazed Ali, Recent progress in molybdenum disulfide (MoS2) based flexible nanogenerators: An inclusive review, Chem. Eng. J. (2023) 147963. https://doi.org/10.1016/j.cej.2023.147963
[40] B. Fang, Z. Xing, D. Sun, Z. Li, and W. Zhou, Hollow semiconductor photocatalysts for solar energy conversion, Adv. Powder Mater. 2 (2022) 100021. https://doi.org/10.1016/j.apmate.2021.11.008
[41] S. Li, Z. Zhao, D. Yu, J. Zhao, Y. Su, Y. Liu, Y. Lin, W. Liu, H. Xu, and Z. Zhang, Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect, Nano Energy 66 (2019) 104083. https://doi.org/10.1016/j.nanoen.2019.104083
[42] J. Raveena, V. S. Manikandan, G. Bakiyaraj, and M. Navaneethan. Co substituted SnS 2 nanoflakes performed as cost-effective counter electrode for DSSCs applications. Journal of Materials Science: Materials in Electronics (2022) 1-8. https://doi.org/10.1007/s10854-021-07015-w
[43] R. Roshan Chandrapal, G. Bakiyaraj, S. Bharathkumar, V. Ganesh, J. Archana, M. Navaneethan, Novel combustion technique synthesis of ZnCo2O4 nanobeads/g-C3N4 nanosheet heterojunction photocatalyst in-effect of enhancing photocatalytic degradation of environmental remediation, Surf. Interf. 41 (2023) 103269. https://doi.org/10.1016/j.surfin.2023.103269
[44] V. F. Yusuf, N. I. Malek, and S. K. Kailasa, Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment, ACS omega 7 49 (2022) 44507-44531. https://doi.org/10.1021/acsomega.2c05310
[45] L. Zhang, Z. Shi, Y. Lin, F. Chong, and Y. Qi, Design strategies for large current density hydrogen evolution reaction, Front. Chem. 10 (2022) 866415. https://doi.org/10.3389/fchem.2022.866415
[46] Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, and C. Liu, Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution, J. Mater. Chem. A 3 (2015) 1656-1665. https://doi.org/10.1039/C4TA04867A
[47] S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review, ACS Catalysis 6 12 (2016) 8069-8097. https://doi.org/10.1021/acscatal.6b02479
[48] M. Ledendecker, S. K. Calderón, C. Papp, H. Steinrück, M. Antonietti, and M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non‐noble bifunctional electrocatalyst for full water splitting, Angewandte Chemie International Edition 54, no. 42 (2015) 12361-12365. https://doi.org/10.1002/anie.201502438
[49] L. Stern, L. Feng, F. Song, and X. Hu, Ni 2 P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni 2 P nanoparticles, Energy Environ. Sci. 8 (2015) 2347-2351. https://doi.org/10.1039/C5EE01155H
[50] S. Dutt, A. Kumar, and S. Singh, Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications, Clean Technol. 5 (2023) 140-166. https://doi.org/10.3390/cleantechnol5010009
[51] M. Lan, R. Guo, Y. Dou, J. Zhou, A. Zhou, and J. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation, Nano Energy 33 (2017) 238-246. https://doi.org/10.1016/j.nanoen.2017.01.046
[52] B. Balan, M. M. Xavier, and S. Mathew, MoS2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction, ACS omega 8 (2023) 25649-25673. https://doi.org/10.1021/acsomega.3c02084
[53] W. Tu, Y. Li, L. Kuai, Y. Zhou, Q. Xu, H. Li, X. Wang, M. Xiao, and Z. Zou, Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol, Nanoscale 9, no. 26 (2017) 9065-9070. https://doi.org/10.1039/C7NR03238B
[54] W. Dai, J. Yu, Y. Deng, X. Hu, T. Wang, and X. Luo, Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation, Appl. Surf. Sci. 403 (2017) 230-239. https://doi.org/10.1016/j.apsusc.2017.01.171
[55] D. Wang, G. Gao, Y. Zhang, L. Zhou, A. Xu, and W. Chen, Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation, Nanoscale 4, no. 24 (2012) 7780-7785. https://doi.org/10.1039/c2nr32533k
[56] M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, and Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets, J. American Chem. Soc. 135, no. 28 (2013) 10411-10417. https://doi.org/10.1021/ja402956f
[57] Z. U. Rehman, M. Bilal, J. Hou, F. K. Butt, J. Ahmad, S. Ali, and A. Hussain, Photocatalytic CO2 reduction using TiO2-based photocatalysts and TiO2 z-scheme heterojunction composites: A review, Molecules 27, no. 7 (2022) 2069. https://doi.org/10.3390/molecules27072069
[58] H. Xu, S. Ouyang, P. Li, T. Kako, and J. Ye, Response to Comment on High-Active Anatase TiO2 Nanosheets Exposed with 95%{100} Facets Toward Efficient H2 Evolution and CO2 Photoreduction, ACS Appl. Mater. Interf. 5 17 (2013) 8262-8262. https://doi.org/10.1021/am402298g
[59] X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 11 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
[60] B. R. Eggins, P. KJ Robertson, E. P. Murphy, E. Woods, and J. TS Irvine, Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids, J. Photochem. Photobio. A: Chem. 118 1 (1998) 31-40. https://doi.org/10.1016/S1010-6030(98)00356-6
[61] W. Tu, Y. Li, L. Kuai, Y. Zhou, Q. Xu, H. Li, X. Wang, M. Xiao, and Z. Zou, Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol, Nanoscale 9 26 (2017) 9065-9070. https://doi.org/10.1039/C7NR03238B
[62] M. Wu, L. Li, N. Liu, D. Wang, Y. Xue, and L. Tang, Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review, Process Saf. Environ. Prot. 118 (2018) 40-58. https://doi.org/10.1016/j.psep.2018.06.025
[63] M. A. Islam, J. Church, C. Han, H. Chung, E. Ji, J. H. Kim, N. Choudhary, G. Lee, W. Hyoung Lee, and Y. Jung, Noble metal-coated MoS2 nanofilms with vertically-aligned 2D layers for visible light-driven photocatalytic degradation of emerging water contaminant, Sci. Rep. 7 1 (2017) 14944. https://doi.org/10.1038/s41598-017-14816-9
[64] E. Rahmanian, R. Malekfar, and M. Pumera, Nanohybrids of Two‐Dimensional Transition‐Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications, Chem. A Eur. J. 24 1 (2018) 18-31. https://doi.org/10.1002/chem.201703434
[65] N. Li, Z. Liu, M. Liu, C. Xue, Q. Chang, H. Wang, Y. Li, Z. Song, and S. Hu, Facile synthesis of carbon dots@ 2D MoS2 heterostructure with enhanced photocatalytic properties, Inorg. Chem. 58 9 (2019) 5746-5752. https://doi.org/10.1021/acs.inorgchem.9b00111
[66] Q. Sun, L. Qin, C. Lai, S. Liu, W. Chen, F. Xu, D. Ma, Constructing functional metal-organic frameworks by ligand design for environmental applications, J. Hazard. Mater. 447 (2023) 130848. https://doi.org/10.1016/j.jhazmat.2023.130848
[67] E. Haque, J. W. Jun, and S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater. 185 (2011) 507-511. https://doi.org/10.1016/j.jhazmat.2010.09.035
[68] C. Brahmi, M. Benltifa, M. Ghali, F. Dumur, C. Simonnet‐Jégat, V. Monnier, F. Morlet‐Savary, L. Bousselmi, and J. Lalevée, Polyoxometalate s/polymer composites for the photodegradation of bisphenol‐A, J. Appl. Polym. Sci. 138, no. 34 (2021) 50864. https://doi.org/10.1002/app.50864
[69] H. R. Ghalebi, S. Aber, and A. Karimi, Keggin type of cesium phosphomolybdate synthesized via solid-state reaction as an efficient catalyst for the photodegradation of a dye pollutant in aqueous phase, J. Mol. Catal. A: Chem. 415 (2016) 96-103. https://doi.org/10.1016/j.molcata.2016.01.031
[70] A. García, B. Rodríguez, M. Rosales, Y. M. Quintero, P. G. Saiz, A. Reizabal, S. Wuttke, L. Celaya-Azcoaga, A. Valverde, and R. F. D. Luis, A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation, Nanomater. 12, no. 23 (2022) 4263. https://doi.org/10.3390/nano12234263
[71] M. A. Basith, N. Yesmin, and R. Hossain, Low temperature synthesis of BiFeO 3 nanoparticles with enhanced magnetization and promising photocatalytic performance in dye degradation and hydrogen evolution, RSC Adv. 8 (2018) 29613-29627. https://doi.org/10.1039/C8RA04599B
[72] K. Guesh, C. AD Caiuby, A. Mayoral, M. Díaz-García, I. Díaz, and M. Sanchez-Sanchez, Sustainable preparation of MIL-100 (Fe) and its photocatalytic behavior in the degradation of methyl orange in water, Cryst. Growth Des. 17 4 (2017) 1806-1813. https://doi.org/10.1021/acs.cgd.6b01776
[73] N. M. Mahmoodi, J. Abdi, M. Oveisi, M. A. Asli, and M. Vossoughi, Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling, Mater. Res. Bull. 100 (2018) 357-366. https://doi.org/10.1016/j.materresbull.2017.12.033
[74] N. M. Mahmoodi, and J. Abdi, Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41, Microchem. J. 144 (2019) 436-442. https://doi.org/10.1016/j.microc.2018.09.033
[75] N. Liu, C. Jing, Z. Li, W. Huang, B. Gao, F. You, and X. Zhang, Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe), Mater. Lett. 237 (2019) 92-95. https://doi.org/10.1016/j.matlet.2018.11.079