GO/rGO doped metal chalcogenide (CoSe, NiSe, and MnSe) nanocomposites for symmetric and asymmetric supercapacitors for energy storage applications
V. Ramesh, D.V. Sridevi, G. Bharath, G. Premanand, P. Umadevi, N. Naveenkumar, A. Abhishek
The scientific community is continually focusing on creating suitable energy storage devices and renewable energy conversion methods due to the growing demand for energy and the quick depletion of fossil fuels. Supercapacitors (SCs) are appealing energy storage devices with high power-density (Pd), good reversibility, and great cycle stability. They are a promising technology. Carbon-based materials like graphene, carbon nanotubes (CNTs), carbon nanosheets, carbon aerogel, and activated nanoporous carbon are used in these capacitors to store energy appropriately. Moreover, the metal chalcogenides (MCs) are a class of semiconducting materials that exhibit excellent electrical conductivity and possess a high theoretical specific capacitance. Because of their electrical and size-tuneable qualities throughout the manufacturing process, they have drawn the interest of researchers trying to increase electrochemical performance. Due to their distinct physical and chemical features, metal chalcogenides (MCs), sulfides, and selenides are highly regarded as promising candidates.
Keywords
GO/rGO Nanocomposites, Metal Chalcogenides based Supercapacitors, Energy Storage
Published online 10/20/2024, 20 pages
Citation: V. Ramesh, D.V. Sridevi, G. Bharath, G. Premanand, P. Umadevi, N. Naveenkumar, A. Abhishek, GO/rGO doped metal chalcogenide (CoSe, NiSe, and MnSe) nanocomposites for symmetric and asymmetric supercapacitors for energy storage applications, Materials Research Foundations, Vol. 170, pp 1-20, 2024
DOI: https://doi.org/10.21741/9781644903292-1
Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications
References
[1] Trudeau, N. and I. Murray (2011), “Development of Energy Efficiency Indicators in Russia”, IEA Energy Papers, No. 2011/01, OECD Publishing. https://doi.org/10.1787/5kgk7w8v4dhl-en
[2] OECD (2011a), Towards Green Growth: Monitoring Progress: OECD Indicators, OECD Green Growth Studies, OECD Publishing. https://doi.org/10.1787/9789264111356-en
[3] IEA (2023), World Energy Outlook 2023, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2023, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A).
[4] Haščič, I., N. Johnstone, F. Watson, and C. Kaminker (2010), “Climate Policy and Technological Innovation and Transfer: An Overview of Trends and Recent Empirical Results”, OECD Environment Working Papers, No. 30, OECD Publishing. https://doi.org/10.1787/5km33bnggcd0-en
[5] IEA (2009a), “Towards a More Energy Efficient Future: Applying Indicators to Enhance Energy Policy”, OECD/IEA, Paris, available at: www.iea.org/papers/2009/indicators_brochure2009.pdf
[6] Mohtasham, J. (2015). Review Article-Renewable Energies. Energy Procedia, 74, 1289–1297. https://doi.org/10.1016/j.egypro.2015.07.774
[7] Neha, & Joon, R. (2021). Renewable Energy Sources: A Review. Journal of Physics: Conference Series, 1979(1), 012023. https://doi.org/10.1088/1742-6596/1979/1/012023
[8] Erdiwansyah, Mahidin, Husin, H. et al. A critical review of the integration of renewable energy sources with various technologies. Prot Control Mod Power Syst 6, 3 (2021). https://doi.org/10.1186/s41601-021-00181-3
[9] C. Allen, G. Metternicht, T. Wiedmann, National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools, Environ. Sci. Policy 66 (2016) 129–207. https://doi.org/10.1016/j.envsci.2016.09. 008
[10] D.L. McCollum, et al., Connecting the Sustainable Development Goals by Their Energy Inter-linkages, International Institute for Applied System Analysis (IIASA), Laxenburg, 2017. http://pure.iiasa.ac.at/14567/1/WP-17-006
[11] Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006
[12] F.F. Nerini, et al., Mapping synergies and trade-offs between energy and the sustainable development goals, Nat. Energy 1 (2017) 2058–7546. https://doi.org/10. 1038/s41560-017-0036-5
[13] Glavin, M. E., & Hurley, W. G. (2012). Optimisation of a photovoltaic battery ultracapacitor hybrid energy storage system. Solar Energy, 86(10), 3009–3020. https://doi.org/10.1016/j.solener.2012.07.005
[14] Schaeck, S., Stoermer, A. O., Albers, J., Weirather-Koestner, D., & Kabza, H. (2011). Lead-acid batteries in micro-hybrid applications. Part II. Test proposal. Journal of Power Sources, 196(3), 1555–1560. https://doi.org/10.1016/j.jpowsour.2010.08.07
[15] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19(3), 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014
[16] Omar, N., Van Mierlo, J., Verbrugge, B., & Van den Bossche, P. (2010). Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications. Electrochimica Acta, 55(25), 7524–7531. https://doi.org/10.1016/j.electacta.2010.03.039
[17] Omar, N., Van Mierlo, J., Van Mulders, F., & Van den Bossche, P. (2009). Assessment of Behaviour of Super Capacitor-battery System in Heavy Hybrid Lift Truck Vehicles. Journal of Asian Electric Vehicles, 7(2), 1277–1282. https://doi.org/10.4130/jaev.7.1277
[18] Abdel Maksoud, M.I.A., Fahim, R.A., Shalan, A.E. et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett 19, 375–439 (2021). https://doi.org/10.1007/s10311-020-01075-w
[19] Ho, J., Jow, T. R., & Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26(1), 20-25. https://doi.org/10.1109/mei.2010.5383924
[20] Şahin, M., Blaabjerg, F., & Sangwongwanich, A. (2022). A Comprehensive Review on Supercapacitor Applications and Developments. Energies, 15(3), 674. https://doi.org/10.3390/en15030674
[21] Olabi, A. G., Abbas, Q., al Makky, A., & Abdelkareem, M. A. (2022). Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 248, 123617. https://doi.org/10.1016/j.energy.2022.123617
[22] Cigolotti, V., Genovese, M., Piraino, F., & Fragiacomo, P. (2023). Applications – Stationary | Stationary Energy Storage System: Overview. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-323-96022-9.00091-8
[23] Lemian, D., & Bode, F. (2022). Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review. Energies, 15(15), 5683. https://doi.org/10.3390/en15155683
[24] M. K. Andreev, “An Overview of Supercapacitors as New Power Sources in Hybrid Energy Storage Systems for Electric Vehicles,” 2020 XI National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 2020, pp. 1-4. https://doi.org/10.1109/ELECTRONICA50406.2020.9305104
[25] Yadlapalli, R. T., Alla, R. R., Kandipati, R., & Kotapati, A. (2022). Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 49, 104194. https://doi.org/10.1016/j.est.2022.104194
[26] Stevic, Z., & Radovanovic, I. (2023). Supercapacitors: The Innovation of Energy Storage. In Updates on Supercapacitors. IntechOpen. https://doi.org/10.5772/intechopen.106705
[27] Gromadskyi, D.G., Hromadska, L.I. Bivariant mechanical tuning of porous carbon electrodes for high-power and high-energy supercapacitors. Surf. Engin. Appl.Electrochem. 52, 584–593 (2016). https://doi.org/10.3103/S1068375516060077
[28] Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/doi:10.1016/j.jpowsour.2006.02.065
[29] Taer, E., Ridholana, R. E., Apriwandi, Taslim, R., & Agustino. (2021). Effective cost and high-performance supercapacitor electrodes from Syzygium oleana leave biomass wastes. Journal of Physics: Conference Series, 1811(1), 012134. https://doi.org/10.1088/1742-6596/1811/1/012134
[30] Mani, Alagiri, Kamali, Khosro Zangeneh, Pandikumar, Alagarsamy, Lim, Yee Seng, Lim, Hong Ngee, Huang, Nay Ming, pp. 225-244, Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive Material for High Performance Supercapacitors. https://doi.org/10.1002/9781119131816.ch7
[31] Wang, S., Wei, T., Qi, Z. (2008). Supercapacitor Energy Storage Technology and its Application in Renewable Energy Power Generation System. In: Goswami, D.Y., Zhao, Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I – Vol. V). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75997-3_566.
[32] Zhang, J., Gu, M., & Chen, X. (2023). Supercapacitors for renewable energy applications: A review. Micro and Nano Engineering, 21, 100229. https://doi.org/doi.org/10.1016/j.mne.2023.100229
[33] A. Burke, “Ultracapacitors: Why, How, and Where Is the Technology,” Journal of Power Sources, Vol. 91, No. 1, 2000, pp. 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
[34] Yadlapalli, R. T., Alla, R. R., Kandipati, R., & Kotapati, A. (2022). Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 49, 104194. https://doi.org/10.1016/j.est.2022.104194
[35] Kurra, N., & Jiang, Q. (2022). Supercapacitors. In Storing Energy (pp. 383–417). Elsevier. https://doi.org/10.1016/B978-0-12-824510-1.00017-9
[36] Bilal, M., Rehman, Z. U., Hou, J., Ali, S., Ullah, S., & Ahmad, J. (2022). Metal oxide–carbon composite: synthesis and properties by using conventional enabling technologies. In Metal Oxide-Carbon Hybrid Materials (pp. 25–60). Elsevier. https://doi.org/10.1016/B978-0-12-822694-0.00021-1
[37] Imran, M., Qasam, K., Safdar, S. et al. Hydrothermally synthesized CuNiS@CNTs composite electrode material for hybrid supercapacitors and non-enzymatic electrochemical glucose sensor. J Mater Sci: Mater Electron 35, 441 (2024). https://doi.org/10.1007/s10854-024-12197-0
[38] Forouzandeh, P., Kumaravel, V., & Pillai, S. C. (2020). Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10(9), 969. https://doi.org/10.3390/catal10090969
[39] Ali, Z., Yaqoob, S., Yu, J., & D’Amore, A. (2024). Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Composites Part C: Open Access, 13, 100434. https://doi.org/10.1016/j.jcomc.2024.100434
[40] Premanand, G., Sridevi, D. V., Perumal, S., Maiyalagan, T., Rodney, J. D., & Ramesh, V. (2022). New hybrid semiconducting CdSe and Fe doped CdSe quantum dots based electrochemical capacitors. Materials Science and Engineering: B, 286, 116015. https://doi.org/10.1016/j.mseb.2022.116015
[41] A, A., V, R., Perumal, S., & Nayak, P. K. (2023). Structural, vibrational and electrochemical studies of bulk and nano SnSb for supercapacitor application. Journal of Alloys and Compounds, 969, 172293. https://doi.org/10.1016/j.jallcom.2023.172293
[42] Abhishek A, Ravi K. R, Tushar H. Rana, Rajasekar Parasuraman, Suresh Perumal, Ramesh V, Thermoelectric, mechanical and electrochemical properties of pure single-phase FeSb, Ceramics International, 2024, ISSN 0272-8842. https://doi.org/10.1016/j.ceramint.2024.04.403.
[43] Macías-García, A., Torrejón-Martín, D., Díaz-Díez, M. Á., & Carrasco-Amador, J. P. (2019). Study of the influence of particle size of activate carbon for the manufacture of electrodes for supercapacitors. Journal of Energy Storage, 25, 100829. https://doi.org/10.1016/j.est.2019.100829
[44] Dujearic-Stephane, K., Gupta, M., Kumar, A., Sharma, V., Pandit, S., Bocchetta, P., & Kumar, Y. (2021). The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. Journal of Composites Science, 5(3), 66. https://doi.org/10.3390/jcs5030066
[45] Ivanovskii, A. L. (2012). Graphene-based and graphene-like materials. Russian Chemical Reviews, 81(7), 571–605. https://doi.org/10.1070/RC2012v081n07ABEH004302
[46] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9(12), 4359–4363. https://doi.org/10.1021/nl902623y
[47] Tîlmaciu, C.-M., & Morris, M. C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3. https://doi.org/10.3389/fchem.2015.00059
[48] Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/10.1016/j.compositesb.2018.01.013
[49] Gandhi, M. R., Vasudevan, S., Shibayama, A., & Yamada, M. (2016). Graphene and Graphene‐Based Composites: A Rising Star in Water Purification ‐ A Comprehensive Overview. ChemistrySelect, 1(15), 4358–4385. https://doi.org/10.1002/slct.201600693
[50] Pandey, A., & Chauhan, P. (2023). Functionalized graphene nanomaterials: Next-generation nanomedicine. In Functionalized Carbon Nanomaterials for Theranostic Applications (pp. 3–18). Elsevier. https://doi.org/10.1016/B978-0-12-824366-4.00020-0
[51] Li, L., Liu, W., Wei, Z., & Li, Z. (2024). GO induces ZIF-8 to produce hollow nanobox CoSe2@ZnSe/rGO for high-performance supercapacitors. Materials Today Sustainability, 26, 100775. https://doi.org/10.1016/j.mtsust.2024.100775
[52] Mahalakshmi, K., Jenila, R. M., Vivek, E., Potheher, I. V., & Thangaraj, V. (2023). Studies on dielectric, thermal and electrochemical characteristics of rGO incorporated CoSe2 nanocomposite for energy storage application. Synthetic Metals, 299, 117450. https://doi.org/10.1016/j.synthmet.2023.117450
[53] Song, Y., Ran, A., Peng, Z., Huang, W., Huang, B., Jian, X., & Mu, C. (2019). Cobalt Diselenide@Reduced graphene oxide based nanohybrid for supercapacitor applications. Composites Part B: Engineering, 174, 107001. https://doi.org/10.1016/j.compositesb.2019.107001
[54] Shah, M. S. U., Zuo, X., Shah, A., Al-Saeedi, S. I., Shah, M. Z. U., Alabbad, E. A., Hou, H., Ahmad, S. A., Arif, M., Sajjad, M., & Haq, T. U. (2023). CoSe nanoparticles supported NiSe2 nanoflowers cathode with improved energy storage performance for advanced hybrid supercapacitors. Journal of Energy Storage, 65, 107267. https://doi.org/10.1016/j.est.2023.107267
[55] Tavakoli, F., Rezaei, B., Taghipour Jahromi, A. R., & Ensafi, A. A. (2020). Facile Synthesis of Yolk-Shelled CuCo 2 Se 4 Microspheres as a Novel Electrode Material for Supercapacitor Application. ACS Applied Materials & Interfaces, 12(1), 418–427. https://doi.org/10.1021/acsami.9b12805
[56] Wang, H., Shu, T., Yuan, J., Li, Y., Lin, B., Wei, F., Qi, J., & Sui, Y. (2022). Highly stable lamellar array composed of CoSe2 nanoparticles for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, 127789. https://doi.org/10.1016/j.colsurfa.2021.127789
[57] Gu, Y., Fan, L.-Q., Huang, J.-L., Geng, C.-L., Lin, J.-M., Huang, M.-L., Huang, Y.-F., & Wu, J.-H. (2019). N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. Journal of Power Sources, 425, 60–68. https://doi.org/10.1016/j.jpowsour.2019.03.123
[58] Wang, J., Sarwar, S., Song, J., Du, L., Li, T., Zhang, Y., Li, B., Guo, Q., Luo, J., & Zhang, X. (2022). One-step microwave synthesis of self-supported CoSe2@NiSe2 nanoflowers on 3D nickel foam for high performance supercapacitors. Journal of Alloys and Compounds, 892, 162079. https://doi.org/10.1016/j.jallcom.2021.162079
[59] Chen, H., Fan, M., Li, C., Tian, G., Lv, C., Chen, D., Shu, K., & Jiang, J. (2016). One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. Journal of Power Sources, 329, 314–322. https://doi.org/10.1016/j.jpowsour.2016.08.097
[60] Ahmad, S. A., Shah, M. Z. U., Hussain, I., Arif, M., Song, P., Al-Saeedi, S. I., Sajjad, M., Ahmad, I., Aftab, J., Huang, T., & Shah, A. (2023). CoSe2@ZnS microsphere arrays with remarkable electrochemical performance for hybrid asymmetric supercapacitor. Journal of Energy Storage, 73, 109090. https://doi.org/10.1016/j.est.2023.109090
[61] Khan, B. A., Hussain, R., Shah, A., Mahmood, A., Shah, M. Z. U., Ismail, J., Rahman, S. ur, Sajjad, M., Assiri, M. A., Imran, M., & Javed, M. S. (2022). NiSe2 nanocrystals intercalated rGO sheets as a high-performance asymmetric supercapacitor electrode. Ceramics International, 48(4), 5509–5517. https://doi.org/10.1016/j.ceramint.2021.11.095
[62] Sun, Z., Liu, F., Wang, J., Hu, Y., Fan, Y., Yan, S., Yang, J., & Xu, L. (2020). Tiny Ni0.85Se nanosheets modified by amorphous carbon and rGO with enhanced electrochemical performance toward hybrid supercapacitors. Journal of Energy Storage, 29, 101348. https://doi.org/10.1016/j.est.2020.101348
[63] Fu, H., Chen, Y., Ren, Z., Xiao, Y., Liu, Y., Zhang, X., & Tian, G. (2018). Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 262, 107–114. https://doi.org/10.1016/j.electacta.2017.12.144
[64] Peng, H., Wei, C., Wang, K., Meng, T., Ma, G., Lei, Z., & Gong, X. (2017). Ni 0.85 Se@MoSe 2 Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 9(20), 17067–17075. https://doi.org/10.1021/acsami.7b02776
[65] Sajjad, M., Ismail, J., Shah, A., Mahmood, A., Shah, M. Z. U., Rahman, S. ur, & Lu, W. (2021). Fabrication of 1.6V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28,000 cycles. Journal of Energy Storage, 44, 103318. https://doi.org/10.1016/j.est.2021.103318
[66] Quan, H., Cheng, B., Chen, D., Su, X., Xiao, Y., & Lei, S. (2016). One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors. Electrochimica Acta, 210, 557–566. https://doi.org/10.1016/j.electacta.2016.05.031
[67] Ismail, J., Sajjad, M., Ullah Shah, M. Z., Hussain, R., Khan, B. A., Maryam, R., Shah, A., Mahmood, A., & Rahman, S. ur. (2022). Comparative capacitive performance of MnSe encapsulated GO based nanocomposites for advanced electrochemical capacitor with rapid charge transport channels. Materials Chemistry and Physics, 284, 126059. https://doi.org/10.1016/j.matchemphys.2022.126059
[68] Hu, L., He, L., Wang, X., Shang, C., & Zhou, G. (2020). MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology, 31(33), 335402. https://doi.org/10.1088/1361-6528/ab8e78