Zirconium and rhodium-based nanomaterials: Green synthesis and emerging applications

$40.00

Zirconium and rhodium-based nanomaterials: Green synthesis and emerging applications

Md. Ahad Ali, Md. Abu Bin Hasan Susan

Zirconium (Zr) and rhodium (Rh)-based nanomaterials (NMs) have gained a surge of interest as potential candidates for new applications. There have been numerous attempts to synthesize NMs of this kind with optimum sizes, shapes, and morphologies. Most often, the successful routes for synthesis of these NMs involve hazardous chemicals and byproducts to render them unfriendly to human health and environment. Novel, more efficient, and sustainable methods for synthesizing NMs with higher stability and biocompatibility are thus critically sought for. Green chemistry has been exploited to reduce negative impacts and improve environmental benignity, and sustainability of the techniques. The application of biomolecules like fucoidans, enzymes, proteins, carbohydrates, polyphenols, alkaloids, terpenoids, flavonoids, saponins, amino acids, etc. has been proven useful as a green source in synthesis of such NMs. This chapter focuses on green syntheses of Zr and Rh-based NMs. The developments so far have been summarized and their uses in emerging application have been highlighted through an extensive review of literature. Finally, future directions and prospects of green methods have been pointed out for diverse applications.

Keywords
Green Synthesis, Zirconium, Rhodium, Nanomaterial, Emerging Application

Published online 10/20/2024, 18 pages

Citation: Md. Ahad Ali, Md. Abu Bin Hasan Susan, Zirconium and rhodium-based nanomaterials: Green synthesis and emerging applications, Materials Research Foundations, Vol. 169, pp 231-248, 2024

DOI: https://doi.org/10.21741/9781644903261-9

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] P.K. Dikshit, J. Kumar, A.K. S. Sadhu, S. Sharma, S. Singh, P.K. Gupta, B. S. Kim, Green synthesis of metallic nanoparticles: applications and limitations. Catalysts, 11(2021) 902. https://doi.org/10.3390/catal11080902
[2] T. P. Chau, G. R. Veeraragavan, M. Narayanan, A. Chinnathambi, S. A. Alharbi, B. Subramani, S. Pikulkaew, Green synthesis of Zirconium nanoparticles using Punica granatum (pomegranate) peel extract and their antimicrobial and antioxidant potency. Environ. Res. 209(2022) 112771. https://doi.org/10.1016/j.envres.2022.112771
[3] M. A. Chowdhury, N. Hossain, M. G. Mostofa, M. R. Mia, M. Tushar, M. M. Rana, M. H. Hossain, Green synthesis and characterization of zirconium nanoparticle for dental implant applications, Heliyon, 9(2023) 1. https://doi.org/10.1016/j.heliyon.2022.e12711
[4] S. Kazi, S. Nirwan, S. Kunde, Green synthesis, characterization and bio-evaluation of zirconium nanoparticles using the dried biomass of Sphagneticola trilobata plant leaf, Bio. Nano. Sci. 12(2022) 731-740. https://doi.org/10.1007/s12668-022-01006-9
[5] S. Agarwal, S. Maiti, S. Rajeshkumar, V. Agarwal, M. Deshmukh, D. Ganapathy, Green synthesis and characterization of strontium and zirconium nanoparticles from green tea leaf extracts and studying their antimicrobial activity and anti-inflammatory activity against oral pathogens. J. Pharm. Negat. (2022) 539-543.
[6] R. H. Salih, S. H. Ahmed, R. S. Hameed, I. H. T. Al-Karkhi, Evaluation of a new green zirconium nanoparticle from lemon and peel extract antioxidant and anticancer activity. Med. Legal Update, 21(2) (2021) 977-981. https://doi.org/10.37506/mlu.v21i2.2810
[7] A. R. G. Ghomi, M. Mohammadi-Khanaposhti, H. Vahidi, F. Kobarfard, M. A. S. Reza, H. Barabadi, Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: a novel biological approach to nanoparticle synthesis, IJPR 18(4) (2019) 2101.
[8] S. P. Suriyaraj, G. Ramadoss, K. Chandraraj, R. Selvakumar, One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater. Sci. Eng. C 105(2019) 110021. https://doi.org/10.1016/j.msec.2019.110021
[9] T. Ahmed, H. Ren, M. Noman, M. Shahid, M. Liu, M. A. Ali, B. Li, Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact 21(2021) 100281. https://doi.org/10.1016/j.impact.2020.100281
[10] M. Riaz, M. Kamran, Y. Fang, Q. Wang, H. Cao, G. Yang, X. Wang, Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 402(2021) 123919. https://doi.org/10.1016/j.jhazmat.2020.123919
[11] J.A. Ferreira, S. Varjani, M.J. Taherzadeh, A Critical Review on the Ubiquitous Role of Filamentous Fungi in Pollution Mitigation. Curr. Pollut. Rep. 6(2020) 295-309. https://doi.org/10.1007/s40726-020-00156-2
[12] V. Bansal, D. Rautaray, A. Ahmad, M. Sastry, Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14(22) (2004) 3303-3305. https://doi.org/10.1039/b407904c
[13] M. Kumaresan, K. V. Anand, K. Govindaraju, S. Tamilselvan, V. G. Kumar, Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram-negative bacteria. Microb. Pathog. 124(2018) 311-315. https://doi.org/10.1016/j.micpath.2018.08.060
[14] S. Balaji, B. K. Mandal, S. Ranjan, N. Dasgupta, R. Chidambaram, Nano-zirconia-evaluation of its antioxidant and anticancer activity. J. Photochem. Photobiol. B, Biol. 170(2017) 125-133. https://doi.org/10.1016/j.jphotobiol.2017.04.004
[15] A. K. Arora, L. Chauhan, P. Kumar, Synthesis and Characterization of Zirconium Oxide Nanoparticles using Sapindus mukorossi (Soapnut) as natural surfactant, A green synthetic approach. AJRC 16(1) (2023) 79-82. https://doi.org/10.52711/0974-4150.2023.00013
[16] R. Thyagarajan, G. Narendrakumar, V. Rameshkumar, M. Varshiney, Green synthesis of zirconia nanoparticles based on ginger root extract: optimization of reaction conditions, application in dentistry. Res. J. Pharm. Technol. 15(11) (2022) 5314-5320. https://doi.org/10.52711/0974-360X.2022.00895
[17] T.P. S. Kandasamy, A. Chinnathambi, Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent. Appl. Nanosci. 13(2023) 1337-1344. https://doi.org/10.1007/s13204-021-02041-w
[18] N. Muthulakshmi, A. Kathirvel, R. Subramanian, M. Senthil, Biofabrication of zirconia nanoparticles: synthesis spectral characterization and biological activity evaluation against pathogenic bacteria. Biointerface Res. Appl. Chem. 13(2023) 190. https://doi.org/10.33263/BRIAC132.190
[19] S. A. Korde, P. B. Thombre, S. S. Dipake, J. N. Sangshetti, A. S. Rajbhoj, S. T. Gaikwad, Neem gum (Azadirachta indicia) facilitated green synthesis of TiO2 and ZrO2 nanoparticles as antimicrobial agents. Inorg. Chem. Commun. 153(2023) 110777. https://doi.org/10.1016/j.inoche.2023.110777
[20] P. Chelliah, S. M. Wabaidur, H. P. Sharma, H. S. Majdi, D. A. Smait, M. A. Najm, W. C. Lai, Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. Separations 10(3) (2023) 156. https://doi.org/10.3390/separations10030156
[21] P. Sumathi, N. Renuka, R. Subramanian, G. Periyasami, M. Rahaman, P. Karthikeyan, Prospective in vitro A431 cell line anticancer efficacy of zirconia nanoflakes derived from Enicostemma littorale aqueous extract. Cell Biochem. Funct. (2023). https://doi.org/10.1002/cbf.3822
[22] K. Selvam, C. Sudhakar, T. Selvankumar, Photocatalytic degradation of malachite green and antibacterial potential of biomimetic-synthesized zirconium oxide nanoparticles using Annona reticulata leaf extract. Appl. Nanosci. 13(2023) 2837-2843. https://doi.org/10.1007/s13204-021-02148-0
[23] I.M.A. Hasan, H. Salah El-Din, A.A. AbdElRaady, Peppermint-Mediated Green Synthesis of Nano ZrO2 and Its Adsorptive Removal of Cobalt from Water. Inorganics 10(2022) 257. https://doi.org/10.3390/inorganics10120257
[24] H.M. Shinde, T.T. Bhosale, N.L. Gavade, Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. J. Mater. Sci: Mater Electron 29(2018) 14055-14064. https://doi.org/10.1007/s10854-018-9537-7
[25] R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K. S. Bartwal, Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. J. Alloys Compd. 509(24) (2011) 6848-6851. https://doi.org/10.1016/j.jallcom.2011.03.138
[26] B.S. Bukhari, M. Imran, M. Bashir, Honey mediated microwave assisted sol-gel synthesis of stabilized zirconia nanofibers. J. Sol-Gel Sci. Technol. 87(2018) 554-567. https://doi.org/10.1007/s10971-018-4749-0
[27] S. Manjunatha, M. S. Dharmaprakash, Microwave assisted synthesis of cubic Zirconia nanoparticles and study of optical and photoluminescence properties. J. Lumin. 180(2016) 20-24. https://doi.org/10.1016/j.jlumin.2016.07.055
[28] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42) (2008) 13850-13851. https://doi.org/10.1021/ja8057953
[29] Y. Yang, Y. Xia, Polycarboxyl metal-organic framework UiO-66-(COOH)2 as efficient desorption/ionization matrix of laser desorption/ionization mass spectrometry for selective enrichment and detection of phosphopeptides. J. Nanopart. Res. 21(2019) 1-12. https://doi.org/10.1007/s11051-018-4445-6
[30] B. Bueken, N. Van Velthoven, T. Willhammar, T. Stassin, I. Stassen, D. A. Keen, T. D. Bennett, Gel-based morphological design of zirconium metal-organic frameworks. Chem. Sci. 8(5) (2017) 3939-3948. https://doi.org/10.1039/C6SC05602D
[31] M. N. Nimbalkar, B. R. Bhat, Facile green synthesis of zirconium-based metal-organic framework having carboxylic anchors. Mater. Today: Proc. 9(2019) 522-527. https://doi.org/10.1016/j.matpr.2018.10.371
[32] S. E. Klein, J. D. Sosa, A. C. Castonguay, W. I. Flores, L. D. Zarzar, Y. Liu, Green synthesis of Zr-based metal-organic framework hydrogel composites and their enhanced adsorptive properties. Inorg. Chem. Front. 7(24) (2020) 4813-4821. https://doi.org/10.1039/D0QI00840K
[33] H. N. Deepakumari, V. L. Ranganatha, G. Nagaraju, R. Prakruthi, C. Mallikarjunaswamy, Facile green synthesis of zirconium phosphate nanoparticles using Aegle marmelos: antimicrobial and photodegradation studies. Mater. Today: Proc. 62(2022) 5169-5173. https://doi.org/10.1016/j.matpr.2022.02.579
[34] A. Díaz, A. David, R. Pérez, M. L. González, A. Báez, S. E. Wark, J. L. Colón, Nanoencapsulation of insulin into zirconium phosphate for oral delivery applications. Biomacromolecules, 11(9) (2010) 2465-2470. https://doi.org/10.1021/bm100659p
[35] B. Debnath, M. Majumdar, M. Bhowmik, K. L. Bhowmik, A. Debnath, D. N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J. Environ. Manage., 261(2020) 110235. https://doi.org/10.1016/j.jenvman.2020.110235
[36] A. F. V. da Silva, A. P. Fagundes, D. L. P. Macuvele, E. F. U. de Carvalho, M. Durazzo, N. Padoin, H. G. Riella, Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf. A Physicochem. Eng. Asp. 583(2019) 123915. https://doi.org/10.1016/j.colsurfa.2019.123915
[37] C. Hang, Q. Li, S. Gao, J. K. Shang, As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. Ind. Eng. Chem. Res. 51(1) (2012) 353-361. https://doi.org/10.1021/ie202260g
[38] V. S. Saraswathi, K. Santhakumar, Photocatalytic activity against azo dye and cytotoxicity on MCF-7 cell lines of zirconium oxide nanoparticle mediated using leaves of Lagerstroemia speciosa. J. Photochem. Photobiol. B, Biol. 169(2017) 47-55. https://doi.org/10.1016/j.jphotobiol.2017.02.023
[39] L. Renuka, K. S. Anantharaju, S. C. Sharma, H. P. Nagaswarupa, S. C. Prashantha, H. Nagabhushana, Y. S. Vidya, Hollow microspheres Mg-doped ZrO2 nanoparticles: green assisted synthesis and applications in photocatalysis and photoluminescence. J. Alloys Compd. 672(2016) 609-622. https://doi.org/10.1016/j.jallcom.2016.02.124
[40] K. Gurushantha, K. S. Anantharaju, S. C. Sharma, H. P. Nagaswarupa, S. C. Prashantha, K. V. Mahesh, H. Nagabhushana, Bio-mediated Sm doped nano cubic zirconia: Photoluminescent, Judd-Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance. J. Alloys Compd. 685(2016) 761-773. https://doi.org/10.1016/j.jallcom.2016.06.105
[41] S. M. Hamad, S. A. Mahmud, S. M. Sajadi, Z. A. Omar, Biosynthesis of Cu/ZrO2 nanocomposite using 7-hydroxy-4′-methoxy-isoflavon extracted from Commelina diffusa and evaluation of its catalytic activity. Surf. Interfaces 15(2019) 125-134. https://doi.org/10.1016/j.surfin.2019.02.008
[42] M. Maham, M. Nasrollahzadeh, S. M. Sajadi, Facile synthesis of Ag/ZrO2 nanocomposite as a recyclable catalyst for the treatment of environmental pollutants. Compos. B. Eng. 185(2020) 107783. https://doi.org/10.1016/j.compositesb.2020.107783
[43] A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Green synthesis of Ag/Fe3O4/ZrO2 nanocomposite using aqueous Centaurea cyanus flower extract and its catalytic application for reduction of organic pollutants. Iran. J. Catal. 9(1) (2019) 27-35.
[44] R. Vennila, P. Kamaraj, M. Arthanareeswari, M. Sridharan, G. Sudha, S. Devikala, K. Rajeshwari, Biosynthesis of ZrO nanoparticles and its natural dye sensitized solar cell studies. Mater. Today: Proc. 5(2) (2018) 8691-8698. https://doi.org/10.1016/j.matpr.2017.12.295
[45] T. V. Tran, D. T. C. Nguyen, P. S. Kumar, A. T. M. Din, A. A. Jalil, D. V. N. Vo, Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: A review. Environ. Chem. Lett. (2022) 1-23. https://doi.org/10.1007/s10311-021-01367-9
[46] C. Hubert, A. Denicourt-Nowicki, P. Beaunier, A. Roucoux, TiO2-supported Rh nanoparticles: From green catalyst preparation to application in arene hydrogenation in neat water. Green Chem. 12(7) (2010) 1167-1170. https://doi.org/10.1039/c004079g
[47] Y. Lee, S. Jang, C. W. Cho, J. S. Bae, S. Park, K. H. Park, Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes. J. Nanosci. Nanotechnol. 13(11) (2013) 7477-7481. https://doi.org/10.1166/jnn.2013.7903
[48] F. Jutz, J. M. Andanson, A. Baiker, A green pathway for hydrogenations on ionic liquid-stabilized nanoparticles. J. Catal. 268(2) (2009) 356-366. https://doi.org/10.1016/j.jcat.2009.10.006
[49] E. Ismail, M. Kenfouch, M. Dhlamini, Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract. J. Nanomater. Mol. Nanotechnol. 6(2017) 2. https://doi.org/10.4172/2324-8777.1000212
[50] M. Ding, Z. Miao, F. Zhang, J. Liu, X. Shuai, Z. Zha, Z. Cao, Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomater. Sci. 8(15) (2020) 4157-4165. https://doi.org/10.1039/D0BM00625D
[51] S. Kang, W. Shin, M. H. Choi, M. Ahn, Y. K. Kim, S. Kim, H. Jang, Morphology-controlled synthesis of rhodium nanoparticles for cancer phototherapy. ACS nano 12(7) (2018) 6997-7008. https://doi.org/10.1021/acsnano.8b02698
[52] S. Cai, W. Xiao, H. Duan, X. Liang, C. Wang, R. Yang, Y. Li, Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Res. 11(2018) 6304-6315. https://doi.org/10.1007/s12274-018-2154-1