Conventional and green synthesis techniques of carbon nanotubes and its environmental/biomedical applications

$40.00

Conventional and green synthesis techniques of carbon nanotubes and its environmental/biomedical applications

Rohit S. Madankar, Pavan R. Bhilkar, Ajay K. Potbhare, Ankita R. Daddemal-Chaudhary, Mayuri S. Umekar, Ashish P. Lambat, Sudip Mondal, Ratiram G. Chaudhary, Ahmed A. Abdala

Carbon nanotubes (CNTs) are popularly known for their incredible applications because of their outstanding physicochemical properties like high surface area, scaffold morphology, functional versatility, high electrical and thermal conductivity. The production of CNTs on a large scale is very costly and non-environmentally. Nonetheless, few methods of scalable fabrication are existed, besides an eco-friendly and cost-effective fabrication of CNTs. An eco-friendly fabrication includes microbes-mediated, plant extracts-mediated and agricultural bio-wastes-mediated. Moreover, research community ought to adopt some natural and renewable sources for CNTs production in large scale. Indeed, these approaches provides a cost-effectiveness, ecofriendly, straightforward, environmental benefits and so forth. Moreover, the properties of CNTs can be improved by doping with some precious transition metals for their advanced applications like environmental and biomedical. Therefore, with this perspective the present chapter is focuses on the conventional and eco-friendly synthesis, types of CNTs, environmental and biomedical applications.

Keywords
Carbon Nanotube (CNTs), Types of CNTs, Green Synthesis, Environmental Applications of CNTs, Biomedical Applications of CNTs

Published online 10/20/2024, 34 pages

Citation: Rohit S. Madankar, Pavan R. Bhilkar, Ajay K. Potbhare, Ankita R. Daddemal-Chaudhary, Mayuri S. Umekar, Ashish P. Lambat, Sudip Mondal, Ratiram G. Chaudhary, Ahmed A. Abdala, Conventional and green synthesis techniques of carbon nanotubes and its environmental/biomedical applications, Materials Research Foundations, Vol. 169, pp 197-230, 2024

DOI: https://doi.org/10.21741/9781644903261-8

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] Sharma, G. (2024). Biogenic carbon nanostructured materials for detection of cancer and medical applications: a mini review. Hybrid Advances, 100166.
[2] Gomathi, A., Vivekchand, S. R. C., Govindaraj, A., and Rao, C. N. R. (2005). Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 17, 2757–2761. http://dx.doi.org/10.1002/adma.200500539
[3] Zhao, X., He, X. D., Sun, Y., and Wang, L. D. (2011). Carbon nanotubes doped SiO2/SiO2-PbO double layer high emissivity coating. Mater. Lett. 65, 2592–2594. http://dx.doi.org/10.1016/j.matlet.2011.06.030
[4] Dillon, F. C., Moghal, J., Koós, A., Lozano, J. G., Miranda, L., Porwal, H., et al. (2015). Ceramic composites from mesoporous silica coated multi wall carbon nanotubes. Microporous Mesoporous Mater. 217, 159–166.http://dx.doi.org/10.1016/j.micromeso.2015.06.024
[5] Wu, Z., Gao, S., Chen, L., Jiang, D., Shao, Q., Zhang, B., et al. (2017). Electrically insulated epoxy nanocomposites reinforced with synergistic core shell SiO2 @MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218:1700357. http://dx.doi.org/10.1002/macp.201700357
[6] Whitsitt, E. A., and Barron, A. R. (2003). Silica coated single walled carbon nanotubes. Nano Lett. 3, 775–778. http://dx.doi.org/10.1021/nl034186m
[7] Chaudhary, R.G., Juneja, H.D., Gandhare, N.V., Gharpured, M.P. (2013). Synthesis, characterization and morphology behaviour of Mn (II), Co (II), Ni (II) and Cu (II) chelate polymer compounds based on chelating ligand, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4: 1625-1636.
[8] Ivnitski, D., Artyushkova, K., Rincón, R. A., Atanassov, P., Luckarift, H. R., and Johnson, G. R. (2008). Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. Small 4, 357–364. http://dx.doi.org/10.1002/smll.200700725
[9] Cui, W., Du, F., Zhao, J., Zhang, W., Yang, Y., Xie, X., et al. (2011). Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon N. Y. 49, 495–500. http://dx.doi.org/10.1016/j.carbon.2010.09.047
[10] Chen, L., Youji, L., Peng, X., Ming, L., and Mengxiong, Z. (2014). Carbon nanotube embedded mesoporous titania pore-hole inorganic hybrid materials with high thermal stability, improved crystallinity and visible-light driven photocatalytic performance. Microporous Mesoporous Mater. 195, 319–329. https://doi.org/10.1016/j.micromeso.2014.04.029
[11] Chaudhary, R.G., Juneja, H.D., Gharpure, M.P. (2013). Chelate polymer compounds with bis (bidentate) ligand: synthesis, spectral, morphological and thermal degradation studies, Journal of the Chinese Advanced Materials Society, 1: 121-133.https://doi.org/10.1080/22243682.2013.810396
[12] Deng, Y., Deng, C., Yang, D., Wang, C., Fu, S., and Zhang, X. (2005). Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem. Commun. 44:5548–5550. https://doi.org/10.1039/B511683J
[13] Choi, W. S., Yang, H. M., Koo, H. Y., Lee, H. J., Lee, Y. B., Bae, T. S., & Jeon, I. C. (2010). Smart microcapsules encapsulating reconfigurable carbon nanotube cores. Adv. Funct. Mater., 20(5): 820-825. https://doi.org/10.1002/adfm.200901739
[14] Mishra, R.K., Verma, K., Chaudhary, R.G., Lambat, T., Joseph, K., (2020). An efficient fabrication of polypropylene hybrid nanocomposites using carbon nanotubes and PET fibrils, Materials Today: Proceedings, 29 (3): 794-800. doi.org/10.1016/j.matpr.2020.04.753.
[15] Mondal, A., Umekar M.S., Bhusari, G.S., Chouke, P.B., Lambat, T., Mondal, S.,, Ratiram G Chaudhary, R.G., Mahmood, S.H. (2021). Biogenic synthesis of metal/metal oxide nanostructured materials, Curr. Pharm. Biotechnol, 22(13):1782-1793. doi: 10.2174/1389201022666210111122911.
[16] Sonkusare, V., Chaudhary, R.G., Bhusari, G., Rai, A.R., Juneja, H.D. (2018). Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 Microflower/γ-Bi2O3 Microspindle. Nano-Structures & Nano-Objects, 13:121-131. doi.org/10.1016/j.nanoso.2018.01.002
[17] Chaudhary, R.G., Sonkusare, V., Bhusari, G., Mondal, A., Shaik, D., Juneja, H.D. (2017). Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance. Research on Chemical Intermediates, 44: 239-2060. doi.org/10.1007/s11164-017-3213-z.
[18] Wu, Z., Dong, F., Zhao, W., Wang, H., Liu, Y., and Guan, B. (2009). The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20:235701. DOI 10.1088/0957-4484/20/23/235701
[19] Chaudhary, R.G., Sonkusare, V., Bhusari, G., Mondal, A., Potbhare, A.K., Sharma, R., Harjeet Juneja, H.D., Abdala, A.A. (2023). Preparation of Mesoporous ThO2 nanoparticles: influence of calcination on morphology and visible-light-driven photocatalytic degradation of indigo carmine and methylene blue, Enviornmental Research, 222: 115363. doi.org/10.1016/j.envres.2023.115363
[20] Aazam, E. S. (2014). Visible light photocatalytic degradation of thiophene using Ag–TiO2/multi-walled carbon nanotubes nanocomposite. Ceram. Int. 40, 6705–6711. https://doi.org/10.1016/j.ceramint.2013.11.132
[21] Potbhare, A. K., Umekar, M. S., Chouke, P. B., Bagade, M. B., Aziz, S. T., Abdala, A. A., & Chaudhary, R. G. (2020). Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity. Materials Today: Proceedings, 29, 720-725. https://doi.org/10.1016/j.matpr.2020.04.212
[22] Chaudhry, A. U., Lonkar, S. P., Chaudhary, R. G., Mabrouk, A., & Abdala, A. A. (2020). Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites. Materials Today: Proceedings, 29, 704-708. https://doi.org/10.1016/j.matpr.2020.04.168
[23] Chaudhary, R. G., Potbhare, A. K., Aziz, S. T., Umekar, M. S., Bhuyar, S. S., & Mondal, A. (2021). Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Materials Today: Proceedings, 36, 756-762. https://doi.org/10.1016/j.matpr.2020.05.821
[24] Umekar, M. S., Chaudhary, R. G., Bhusari, G. S., Mondal, A., Potbhare, A. K., & Sami, M. (2020). Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract. Materials Today: Proceedings, 29, 709-714. https://doi.org/10.1016/j.matpr.2020.04.169
[25] Chaudhary, R. G. (2020). Graphene-based materials and their nanocomposites with metal oxides: Biosynthesis, electrochemical, photocatalytic and antimicrobial applications. Materials Research Foundations, 83, 79-116. https://doi.org/10.21741/9781644900970-4.
[26] Umekar, M., Chaudhary, R., Bhusari, G., & Potbhare, A. (2021). Fabrication of zinc oxide-decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum. Emerging Materials Research, 10(1), 75-84. https://doi.org/10.1680/jemmr.19.00175
[27] Umekar, M. S., Bhusari, G. S., Bhoyar, T., Devthade, V., Kapgate, B. P., Potbhare, A. P., Chaudhary, R. G. & Abdala, A. A. (2023). Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants. Current Nanoscience, 19(2), 148-169. https://doi.org/10.2174/1573413718666220127123935
[28] Potbhare, A. K., Shrirame, T. S., Devthade, V., Yerpude, S. T., Umekar, M. S., Chaudhary, R. G., & Bhusari, G. S. (2022). Fabrications and applications of polymer–graphene nanocomposites for sustainability. In Biogenic Sustainable Nanotechnology (pp. 149-184). Elsevier https://doi.org/10.1016/B978-0-323-88535-5.00005-6
[29] Bhilkar, P. R., Madankar, R. S., Shrirame, T. S., Utane, R. D., Potbhare, A. K., Yerpude, S., Chaudhary, R. G. (2022). Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications. Mater. Res., 135, 55-82. https://doi.org/10.21741/9781644902172-4
[30] Bright, W. (2000). Note. Lang. Soc. 29, 155–155.
[31] Sahoo, N. G., Rana, S., Cho, J. W., Li, L., and Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867. https://doi.org/10.1016/j.progpolymsci.2010.03.002
[32] Gao, C., Guo, Z., Liu, J.-H., and Huang, X.-J. (2012). The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4, 1948–1963. https://doi.org/10.1039/C2NR11757F
[33] Rabti, A., Raouafi, N., and Merkoçi, A. (2016). Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon N. Y. 108, 481–514. https://doi.org/10.1016/j.carbon.2016.07.043
[34] Rao, G. P., Lu, C., and Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation Purif. Technol. 58, 224–231. https://doi.org/10.1016/j.seppur.2006.12.006
[35] Yang, S., Li, J., Shao, D., Hu, J., and Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, PH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. https://doi.org/10.1016/j.jhazmat.2008.11.003
[36] Zawisza, B., Skorek, R., Stankiewicz, G., and Sitko, R. (2012). Carbon nanotubes as a solid sorbent for the preconcentration of Cr, Mn, Fe, Co, Ni, Cu, Zn and Pbprior to wavelength-dispersive X-ray fluorescence spectrometry. Talanta 99, 918–923. https://doi.org/10.1016/j.talanta.2012.07.059
[37] Ihsanullah, Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., et al. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation Purif. Technol. 157, 141–161. https://doi.org/10.1016/j.seppur.2015.11.039
[38] Huang, J., Liu, Y., & You, T. (2010). Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods, 2(3), 202-211. https://doi.org/10.1039/B9AY00312F
[39] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., vol. 84, no. 24, pp. 5552–5555, 2000. https://doi.org/10.1103/PhysRevLett.84.5552
[40] S. Xie, W. Li, Z. Pan, B. Chang, and S. Lianfeng, “Mechanical and physical properties on carbon nanotube,” J. Phys. Chem. Solids, vol. 61, no. 7, pp. 1153–1158, 2000. https://doi.org/10.1016/S0022-3697(99)00376-5
[41] J. A. Elliott, J. K. W. Sandler, A. H. Windle, R. J. Young, and M. S. P. Shaffer, “Collapse of Single-Walled Carbon Nanotubes is Diameter Dependent,” Phys. Rev. Lett., vol. 92, no. 9, pp. 1–4, 2004. https://doi.org/10.1103/PhysRevLett.92.095501
[42] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58. http://dx.doi.org/10.1038/354056a0
[43] Guldi, D.M. and N. Martín, Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications. 2010: John Wiley & Sons. http://dx.doi.org/10.1002/ange.201006930
[44] Zheng, B., Y. Li, and J. Liu, CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Appl. Phys. A., 2002. 74(3): p. 345-348. https://doi:10.1007/s003390201275
[45] Ando, Y., et al., Growing carbon nanotubes. Materials today, 2004. 7(10): p. 22-29. https://doi.org/10.1016/S1369-7021(04)00446-8
[46] Toubestani, D. H., Ghoranneviss, M., Mahmoodi, A., & Zareh, M. R. (2010, January). CVD growth of carbon nanotubes and nanofibers: big length and constant diameter. In Macromolecular symposia (Vol. 287, No. 1, pp. 143-147). Weinheim: WILEY‐VCH Verlag. https://doi.org/10.1002/masy.201050120
[47] Kang, Z., et al., One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite. J. Am. Chem. Soc., 2003. 125(45): p. 13652-13653. https://doi.org/10.1021/ja037399m
[48] Chen, Y., et al., The nucleation and growth of carbon nanotubes in a mechano-thermal process. Carbon, 2004. 42(8): p. 1543-1548. https://doi.org/10.1016/j.carbon.2004.02.003
[49] Kusunoki, M., et al., Formation of self-aligned carbon nanotube films by surface decomposition of silicon carbide. Philos. Mag. Lett., 1999. 79(4): p. 153-161. https://doi.org/10.1080/095008399177381
[50] Viculis, L.M., J.J. Mack, and R.B. Kaner, A chemical route to carbon nanoscrolls. Science, 2003. 299(5611): p. 1361-1361. https://doi.org/10.1126/science.1078842
[51] Luxembourg, D., G. Flamant, and D. Laplaze, Solar synthesis of single-walled carbon nanotubes at medium scale. Carbon, 2005. 43(11): p. 2302-2310. https://doi.org/10.1016/j.carbon.2005.04.010
[52] Cho, W.S., et al., Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett., 1996. 69(2): p. 278-279. https://doi.org/10.1063/1.117949
[53] Mahanandia, P., et al., Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun., 2008. 145(3): p. 143-148. https://doi.org/10.1016/j.ssc.2007.10.020
[54] Novoselova, I., et al., Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys. E: Low-dimens. Syst. Nanostructures, 2008. 40(7): p. 2231-2237. https://doi.org/10.1016/j.physe.2007.10.069
[55] Zhang, Y., et al., Liquid phase synthesis of carbon nanotubes. Physica B: Condensed Matter, 2002. 323(1): p. 293-295. https://doi.org/10.1016/S0921-4526(02)01026-8
[56] Szabó, A., et al., Synthesis methods of carbon nanotubes and related materials. Materials, 2010. 3(5): p. 3092-3140. https://doi.org/10.3390/ma3053092
[57] Terrones, M., Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res., 2003. 33(1): p. 419 501. https://doi.org/10.1146/annurev.matsci.33.012802.100255
[58] Chen, G.Z., et al., Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp. Mater. Process., 1998. 2: p. 459-470. DOI 10.1007/s10008-012-1896-z
[59] Ren, Z., Y. Lan, and Y. Wang, Aligned carbon nanotubes: physics, concepts, fabrication and devices. 2012: Springer Science & Business Media. ISBN: 9783642445392
[60] Guo, T., et al., Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 1995. 99(27): p. 10694-10697. https://doi.org/10.1021/j100027a002
[61] Rafique, M.M.A. and J. Iqbal, Production of carbon nanotubes by different routes-a review. J. encapsulation adsorp. Sci., 2011. 1(02): p. 29. http://dx.doi.org/10.4236/jeas.2011.12004
[62] Guo, T., et al., Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett., 1995. 243(1): p. 49-54. https://doi.org/10.1016/0009-2614%2895%2900825-O
[63] Söylev, D., Optimization of carbon nanotube properties by controlled amount oxidizers. 2011. http://hdl.handle.net/11147/3096
[64] Kumar, M. and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010. 10(6): p. 3739-3758. http://dx.doi.org/10.1166/jnn.2010.2939
[65] Meyyappan, M., Carbon nanotubes: science and applications. 2004: CRC press. https://doi.org/10.1201/9780203494936
[66] Öncel, Ç. and Y. Yürüm, Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters. Fuller. Nanotub. Carbon Nanostructures, 2006. 14(1): p. 17-37. http://dx.doi.org/10.1080/15363830500538441
[67] Boskovic, B.O., et al., Large-area synthesis of carbon nanofibres at room temperature. Nat. mater., 2002. 1(3): p. 165-168. https://doi.org/10.1038/nmat755
[68] Meyyappan, M., et al., Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol., 2003. 12(2): p. 205. http://dx.doi.org/10.1088/0963-0252/12/2/312
[69] Hu, C.-T., et al., Plasma-enhanced chemical vapor deposition carbon nanotubes for ethanol gas sensors. Diam. Relat. Mater., 2009. 18(2): p. 472-477. http://dx.doi.org/10.1016/j.diamond.2008.10.057
[70] Hofmann, S., et al., Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 2003. 83(1): p. 135-137. http://dx.doi.org/10.1063/1.1589187
[71] Queipo, P., et al., Aerosol Catalyst Particles for Substrate CVD Synthesis of Single‐Walled Carbon Nanotubes. Chem. Vap. Depos., 2006. 12(6): p. 364-369. https://doi.org/10.1002/cvde.200506446
[72] Byeon, H., et al., Growth of ultra long multiwall carbon nanotube arrays by aerosol assisted chemical vapor deposition. J. Nanosci. Nanotechnol., 2010. 10(9): p. 6116-6119. https://doi.org/10.1166/jnn.2010.2574
[73] Abdullayeva, S., Musayeva, N., Frigeri, C., Huseynov, A., Jabbarov, R., Abdullayev, R., … & Hasanov, R. (2015). Characterization of high quality carbon nanotubes synthesized via Aerosol-CVD. Journal: J. Adv. Phys., 11. http://dx.doi.org/10.24297/jap.v11i3.6943
[74] Ayala, P., et al., Cyclohexane triggers staged growth of pure and vertically aligned single wall carbon nanotubes. Chem. Phys. Lett., 2008. 454(4): p. 332-336. http://dx.doi.org/10.1016/j.cplett.2008.02.041
[75] Murakami, Y., et al., Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chem. Phys. Lett., 2003. 374(1): p. 53-58. http://dx.doi.org/10.1016/S0009-2614(03)00687-0
[76] Patole, S., et al., Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon, 2008. 46(14): p. 1987-1993. http://dx.doi.org/10.1016/j.carbon.2008.08.009
[77] Sahoo, S.C., et al., Carbon nanoflake growth from carbon nanotubes by hot filament chemical vapor deposition. Carbon, 2014. 67: p. 704-711. http://dx.doi.org/10.1016/j.carbon.2013.10.062
[78] Zhang, G., et al., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U. S. A., 2005. 102(45): p. 16141-16145. https://doi.org/10.1073/pnas.0507064102
[79] Yabe, Y., et al., Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diam. Relat. Mater., 2004. 13(4): p. 1292-1295. https://doi.org/10.1016/j.diamond.2003.11.067
[80] Chen, S., et al., Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method. J. Nanosci. Nanotechnol, 2005. 5(11): p. 1887-1892. https://doi.org/10.1166/jnn.2005.437
[81] Cantoro, M., et al., Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett., 2006. 6(6): p. 1107-1112. https://doi.org/10.1021/nl060068y
[82] Queipo, P., et al., Aerosol Catalyst Particles for Substrate CVD Synthesis of Single‐Walled Carbon Nanotubes. Chem. Vap. Depos., 2006. 12(6): p. 364-369. https://doi.org/10.1002/cvde.200506446
[83] Su, M., B. Zheng, and J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett., 2000. 322(5): p. 321-326. https://doi.org/10.1016/S0009-2614(00)00422-X
[84] Maruyama, S., et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett., 2002. 360(3): p. 229-234. https://doi.org/10.1016/S0009-2614(02)00838-2
[85] Chen, Y., M. Conway, and J. Fitzgerald, Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl. Phys. A, 2003. 76(4): p. 633-636.http://dx.doi.org/10.1007/s00339-002-1986-3
[86] Bai, J., et al., Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett., 2002. 365(1): p. 184-188. http://dx.doi.org/10.1016/S0009-2614(02)01447-1
[87] Vander Wal, R.L., L.J. Hall, and G.M. Berger, Optimization of flame synthesis for carbon nanotubes using supported catalyst. J. Phys. Chem. B, 2002. 106(51): p. 13122-13132. https://doi.org/10.11113/jt.v78.9595
[88] Vander Wal, R.L., G.M. Berger, and T.M. Ticich, Flame synthesis of carbon nanotubes using catalyst particles prepared by laser ablation. Am. Chem. Soc., Div. Fuel Chem, 2004. 49(2): p. 879. https://doi.org/10.1166/jnn.2003.201
[89] Braidy, N., M. El Khakani, and G. Botton, Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd: YAG laser vaporization method. Carbon, 2002. 40(15): p. 2835-2842. http://dx.doi.org/10.1016/S0008-6223(02)00260-9
[90] Braidy, N., M. El Khakani, and G. Botton, Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett., 2002. 354(1): p. 88-92. http://dx.doi.org/10.1016/S0009-2614(02)00110-0
[91] Nishide, D., et al., High-yield production of single-wall carbon nanotubes in nitrogen gas. Chem. Phys. Lett., 2003. 372(1): p. 45-50. http://dx.doi.org/10.1016/S0009-2614(03)00352-X
[92] Height, M.J., et al., Flame synthesis of single-walled carbon nanotubes. Carbon, 2004. 42(11): p. 2295-2307. http://dx.doi.org/10.1016/j.carbon.2004.05.010
[93] Height, M.J., J.B. Howard, and J.W. Tester. Flame Synthesis of Carbon Nanotubes. in MRS Proceedings. 2003. Cambridge Univ Press. doi:10.1557/PROC-772-M1.8
[94] Lee, S.J., et al., Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diam. Relat. Mater., 2002. 11(3): p. 914-917. https://doi.org/10.1016/S0925-9635(01)00639-2
[95] Wu, H., et al., One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts. Carbon, 2016. 106: p. 208-217. https://doi.org/10.1016/j.carbon.2016.05.031
[96] Smeulders, D., et al., Rod milling and thermal annealing of graphite: Passing the equilibrium barrier. J. Mater. Sci., 2005. 40(3): p. 655-662. https://doi.org/10.1007/s10853-005-6303-z
[97] Ando, Y., & Zhao, X. (2006). Synthesis of carbon nanotubes by arc-discharge method. New Diam. Front. Carbon Technol., 16(3), 123-138.
[98] Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., & Chang, R. P. (1995). Carbon nanotubes synthesized in a hydrogen arc discharge. Appl. Phys. Lett., 66(18), 2430-2432. https://doi.org/10.1063/1.113963
[99] Lee, S. J., Baik, H. K., Yoo, J. E., & Han, J. H. (2002). Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diam. Relat. Mater., 11(3-6), 914-917. https://doi.org/10.1016/S0925-9635(01)00639-2
[100] Long RQ, Lane RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc. 2001;123,(9):2058–2059.1 https://doi.org/10.1021/ja003830l
[101] Tripathi, N., Pavelyev, V., & Islam, S. S. (2017). Synthesis of carbon nanotubes using green plant extract as catalyst: unconventional concept and its realization. Applied Nanoscience, 7, 557-566.
[102] Janas, D. (2020). From bio to nano: A review of sustainable methods of synthesis of carbon nanotubes. Sustainability, 12(10), 4115.
[103] Qu, J., Luo, C., Cong, Q., & Yuan, X. (2014). Recycling of the hyperaccumulator Brassica juncea L.: synthesis of carbon nanotube-Cu/ZnO nanocomposites. Journal of Material Cycles and Waste Management, 16, 162-166.
[104] Paul, S., & Samdarshi, S. K. (2011). A green precursor for carbon nanotube synthesis. New Carbon Materials, 26(2), 85-88.
[105] Hamid, Z. A., Azim, A. A., Mouez, F. A., & Rehim, S. A. (2017). Challenges on synthesis of carbon nanotubes from environmentally friendly green oil using pyrolysis technique. Journal of Analytical and Applied Pyrolysis, 126, 218-229.
[106] Patel, D. K., Kim, H. B., Dutta, S. D., Ganguly, K., & Lim, K. T. (2020). Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials, 13(7), 1679.
[107] Ghosh, P., Afre, R. A., Soga, T., & Jimbo, T. (2007). A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil. Materials Letters, 61(17), 3768-3770.
[108] Suriani, A. B., Azira, A. A., Nik, S. F., Nor, R. M., & Rusop, M. (2009). Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Materials Letters, 63(30), 2704-2706.
[109] Zhu, J., Jia, J., Kwong, F. L., Ng, D. H. L., & Tjong, S. C. (2012). Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. biomass and bioenergy, 36, 12-19.
[110] Lotfy, V. F., Fathy, N. A., & Basta, A. H. (2018). Novel approach for synthesizing different shapes of carbon nanotubes from rice straw residue. Journal of Environmental Chemical Engineering, 6(5), 6263-6274.
[111] Awasthi, K., Kumar, R., Tiwari, R. S., & Srivastava, O. N. (2010). Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: turpentine oil. Journal of Experimental Nanoscience, 5(6), 498-508.
[112] Kumar, R., Singh, R. K., & Tiwari, R. S. (2016). Growth analysis and high-yield synthesis of aligned-stacked branched nitrogen-doped carbon nanotubes using sesame oil as a natural botanical hydrocarbon precursor. Materials & design, 94, 166-175.
[113] Kumar, R., Tiwari, R. S., & Srivastava, O. N. (2011). Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale research letters, 6, 1-6.
[114] Beckett, P. (2003, April). Exploiting multiple functionality for nano-scale reconfigurable systems. In Proceedings of the 13th ACM Great Lakes symposium on VLSI (pp. 50-55). http://dx.doi.org/10.1145/764808.764822
[115] Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energ. Rev. 2009;13(6–7):1513–1522. https://doi.org/10.1016/j.rser.2008.09.028
[116] Yan J, Fan Z, Wei T, et al. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources. 2009;194(2):1202–1207. https://doi.org/10.1016/j.jpowsour.2009.06.006
[117] Jacobs CB, Peairs MJ, Venton BJ. Review: carbon nano tube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 2010;662(2):105–127.1 https://doi.org/10.1016/j.aca.2010.01.009
[118] Yang N, Chen X, Ren T, et al. Carbon nanotube based biosensor. Sens Actuator, B. 2015;207:690–715.1 https://doi.org/10.1016/j.snb.2014.10.040
[119] Adeli M, Soleyman R, Beiranvanda Z, et al. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions. Chem Soc Rev. 2013;42(12):5231–5256.1 https://doi.org/10.1039/C3CS35431H
[120] Cinke M, Li J, Charles W, et al. CO2 Adsorption in single-walled carbon nanotubes. Chem Phys Lett. 2003;376(5–6):761–766. https://doi.org/10.1016/S0009-2614(03)01124-2
[121] Qing. QL, Gao LL, Yu Z. Carbon nanotubes prepared from CO on pre-reduced La2NiO4 perovskite precursor. Mater Res Bull. 2001;36(3–4):471–477. https://doi.org/10.1016/S0025-5408(00)00480-3
[122] Park SJ, Lee DG. Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes. Carbon. 2006;44(10):1930–1935. https://doi.org/10.1016/j.carbon.2006.02.005
[123] Park, J. H., Yoon, K. Y., Na, H., Kim, Y. S., Hwang, J., Kim, J., & Yoon, Y. H. (2011). Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci. Total Environ., 409(19), 4132-4138. https://doi.org/10.1016/j.scitotenv.2011.04.060
[124] Shohreh F, Masoud Vesali N, Mona C, et al. Improving CO2/CH4 adsorptive selectivity of carbon nanotubes by functionalization with nitrogen containing groups. Chem. Eng. Res. Des. 2011;89(9):1669–1675. https://doi.org/10.1016/j.cherd.2010.10.002
[125] Somy A, Mehrnia MR, Delavari-Amrei H, et al. Adsorption of carbon dioxide using impregnated acti vated carbon promoted by zinc. Int. J. Greenhouse Gas Control. 2009;3(3):249–254. https://doi.org/10.1016/j.ijggc.2008.10.003
[126] Budaeva AD, Zoltoev EV. “Porous structure and sorp tion properties of nitrogen-containing activated carbon,”. Fuel. 2010;89:2623–2627. https://doi.org/10.1016/j.fuel.2010.04.016
[127] Verlicchi P, Aukidy AM, Zambello E, Za. E Mbello. “Occurrence of pharmaceutical compounds in urban wastewater removal, mass load and environmental risk after a secondary treatment—a review,”. Sci Total Environ. 2012;429:123–155.1 https://doi.org/10.1016/j.scitotenv.2012.04.028
[128] Augusto F, Carasek E, Silva RGC. New sorbents for extraction and microextraction techniques. J Chromatogr A. 2010;1217(16):2533–2542.1 https://doi.org/10.1016/j.chroma.2009.12.033
[129] Adenuga AA, Truong L, Tanguay RL, et al. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int J Biomed Nanosci Nanotechnol. 2013;3 (1/2):38–51. https://doi.org/10.1504%2FIJBNN.2013.054514
[130] Girardello, R., Tasselli, S., Baranzini, N., Valvassori, R., de Eguileor, M., & Grimaldi, A. (2015). Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. Plos one, 10(12), e0144361. https://doi.org/10.1371/journal.pone.0144361
[131] Wei C, Dai L, Roy A, et al. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J. Am. Chem. Soc. 2006;128(5):1412. https://doi.org/10.1021/ja0570335
[132] Attar S, Ranveer A. Carbon nanotubes and its environmental applications Journal of Environmental Science. Comput Sci Eng Technol. 2015;4:304–311.
[133] Kumar M, Ando Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor – camphor. Chem Phys Lett. 2003;374(5– 6):521–5261. http://dx.doi.org/10.1016/S0009-2614(03)00742-5
[134] Kumar M, Ando Y. Single-wall and multi-wall carbon nanotubes from camphor – a botanical hydrocarbon. Diam Relat Mater. 2003;12(10–11):1845–1850. http://dx.doi.org/10.1016/S0925-9635(03)00217-6
[135] Khalid, A., Ahmad, P., Khan, A., Muhammad, S., Khandaker, M. U., Alam, M. M., … & Emran, T. B. (2022). Effect of Cu doping on ZnO nanoparticles as a photocatalyst for the removal of organic wastewater. Bioinorg. Chem. Appl., 2022. https://doi.org/10.1155/2022/9459886
[136] S.Kabiri, D.N.H.Tran, T.Altalhi and D.Losic, Outstanding adsorption performance of graphene–carbon nanotube aero gels for continuous oil removal, Carbon, 2014, 80, 523–533. https://doi.org/10.1016/j.carbon.2014.08.092
[137] W. Wan, R. Zhang, W. Li, H. Liu, Y. Lin and L. Li, et al., Graphene–carbon nanotube aerogel as an ultra-light, com pressible and recyclable highly efficient absorbent for oil and dyes, Environ. Sci.: Nano, 2016, 3(1), 107–113. https://doi.org/10.1039/C5EN00125K
[138] W. Zhan, S. Yu, L. Gao, F. Wang, X. Fu and G. Sui, et al., Bioinspired Assembly of Carbon Nanotube into Graphene Aerogel with ‘‘Cabbagelike’’ Hierarchical Porous Structure for Highly Efficient Organic Pollutants Cleanup, ACS Appl. Mater. Interfaces, 2018, 10(1), 1093–1103. https://doi.org/10.1021/acsami.7b15322
[139] T.Tao, G.Li, Y. HeandP. Duan,Hybridcarbon nanotubes/ graphene/nickel fluffy spheres for fast magnetic separation and efficient removal of organic solvents from water, Mater. Lett., 2019, 254, 440–443. https://doi.org/10.1016/j.matlet.2019.06.104
[140] J. Cai, J. Tian, H. Gu and Z. Guo, Amino carbon nanotube modified reduced graphene oxide aerogel for oil/water separation, ES Mater. Manuf., 2019, 6(2), 68–74. http://dx.doi.org/10.30919/esmm5f611
[141] Shrirame, T. S., Khan, J. S., Umekar, M. S., Potbhare, A. K., Bhilkar, P. R., Bhusari, G. S., … & Chaudhary, R. G. (2022). Graphene-Polymer Nanocomposites for Environmental Remediation of Organic Pollutants. Metal Nanocomposites for Energy and Environmental Applications, 321-349. http://dx.doi.org/10.1007/978-981-16-8599-6_14
[142] Z. Sui, Q. Meng, X. Zhang, R. Ma and B. Cao, Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification, J. Mater. Chem., 2012, 22(18), 8767. https://doi.org/10.1039/C2JM00055E
[143] S. K. Das, J. Bhowal, A. R. Das and A. K. Guha, Adsorption behavior of rhodamine B on rhizopus o ryzae biomass, Langmuir, 2006, 22(17), 7265–7272. http://dx.doi.org/10.1021/la0526378
[144] L. Sun, C. Tian, L. Wang, J. Zou, G. Mu and H. Fu, Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye, J. Mater. Chem., 2011, 21(20), 7232–7239. https://doi.org/10.1039/C1JM10470E
[145] B.S. Girgis, A. M. Soliman and N. A. Fathy, Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation, Microporous Mesoporous Mater., 2011, 142(2–3), 518–525. http://dx.doi.org/10.1016/j.micromeso.2010.12.044
[146] L. Ai and J. Jiang, Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene carbon nanotube hybrid, Chem. Eng. J., 2012, 192, 156–163. http://dx.doi.org/10.1016/j.cej.2012.03.056
[147] Aziz, S. T., Ummekar, M., Karajagi, I., Riyajuddin, S. K., Siddhartha, K. V. R., Saini, A., … & Dutta, A. (2022). A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting. Cell Reports Physical Science, 3(11). http://dx.doi.org/10.1016/j.xcrp.2022.101106
[148] M. Kotal and A. K. Bhowmick, Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide, J. Phys. Chem. C, 2013, 117(48), 25865–25875. http://dx.doi.org/10.1021/jp4097265
[149] K. Goh, W. Jiang, H. E. Karahan, S. Zhai, L. Wei and D. Yu, et al., All-carbon nanoarchitectures as high-performance separation membranes with superior stability, Adv. Funct. Mater., 2015, 25(47), 7348–7359. http://dx.doi.org/10.1002/adfm.201502955
[150] S. Wang, H. Sun, H.-M. Ang and M. Tade´, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J., 2013, 226, 336–347. http://dx.doi.org/10.1016/j.cej.2013.04.070
[151] D. Zhao, Y. Wang, S. Zhao, M. Wakeel, Z. Wang and R. S. Shaikh, et al., A simple method for preparing ultra light graphene aerogel for rapid removal of U(VI) from aqueous solution, Environ. Pollut., 2019, 251, 547–554. https://doi.org/10.1016/j.envpol.2019.05.011
[152] H. Gao, Y. Sun, J. Zhou, R. Xu and H. Duan, Mussel inspired synthesis of polydopamine-functionalized gra phene hydrogel as reusable adsorbents for water purification, ACS Appl. Mater. Interfaces, 2013, 5(2), 425–432. https://doi.org/10.1021/am302500v
[153] Y. Lei, F. Chen, Y. Luo and L. Zhang, Synthesis of three dimensional graphene oxide foam for the removal of heavy metal ions, Chem. Phys. Lett., 2014, 593, 122–127. http://dx.doi.org/10.1016/j.cplett.2013.12.066
[154] X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu and J. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 2012, 50(13), 4856–4864. http://dx.doi.org/10.1016/j.carbon.2012.06.013
[155] M. Liu, C. Chen, J. Hu, X. Wu and X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal, J. Phys. Chem. C, 2011, 115(51), 25234–25240. http://dx.doi.org/10.1021/jp208575m
[156] G. Zhao, X. Ren, X. Gao, X. Tan, J. Li and C. Chen, et al., Removal of Pb(II) ions from aqueous solutions on few layered graphene oxide nanosheets, Dalton Trans., 2011, 40(41), 10945–10952. https://doi.org/10.1039/C1DT11005E
[157] N.Zhang, H. Qiu, Y. Si, W. Wang andJ. Gao, Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions, Carbon, 2011, 49(3), 827–837. http://dx.doi.org/10.1016/j.carbon.2010.10.024
[158] B. Xiao and K. Thomas, Competitive adsorption of aqu eous metal ions on an oxidized nanoporous activated carbon, Langmuir, 2004, 20(11), 4566–4578. https://doi.org/10.1021/la049712j
[159] M. Benitez, D. Das, R. Ferreira, U. Pischel and H. Garcı´a, Urea-containing mesoporous silica for the adsorption of Fe(III) cations, Chem. Mater., 2006, 18(23), 5597–5603. http://dx.doi.org/10.1021/cm061287n
[160] A. Liu, K. Hidajat, S. Kawi and D. Zhao, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chem. Commun., 2000, (13), 1145–1146. https://doi.org/10.1039/B002661L
[161] L. Li, G. Zhou, Z. Weng, X.-Y. Shan, F. Li and H.-M. Cheng, Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal, Carbon, 2014, 67, 500–507. http://dx.doi.org/10.1016/j.carbon.2013.10.022
[162] M. Zhang, B. Gao, X. Cao and L. Yang, Synthesis of a multifunctional graphene–carbon nanotube aerogel and its strong adsorption of lead from aqueous solution, RSC Adv., 2013, 3(43), 21099–21105. https://doi.org/10.1039/C3RA44340J
[163] S. Vadahanambi, S.-H. Lee, W.-J. Kim and I.-K. Oh, Arsenic removal from contaminated water using three dimensional graphene-carbon nanotube-iron oxide nanostructures, Environ. Sci. Technol., 2013, 47(18), 10510–10517. http://dx.doi.org/10.1021/es401389g
[164] B. P. Viraka Nellore, R. Kanchanapally, F. Pedraza, S. S. Sinha, A. Pramanik and A. T. Hamme, et al., Bio conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water, ACS Appl. Mater. Interfaces, 2015, 7(34), 19210–19218. https://doi.org/10.1021%2Facsami.5b05012
[165] Z. Gu, Y. Wang, J. Tang, J. Yang, J. Liao and Y. Yang, et al., The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels, J. Radioanal. Nucl. Chem., 2015, 303(3), 1835–1842. http://dx.doi.org/10.1007/s10967-014-3795-5
[166] H. Huang, T. Chen, X. Liu and H. Ma, Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials, Anal. Chim. Acta, 2014, 852, 45–54. https://doi.org/10.1016/j.aca.2014.09.010
[167] Tomar, R., Abdala, A. A., Chaudhary, R. G., & Singh, N. B. (2020). Photocatalytic degradation of dyes by nanomaterials. Mater. Today: Proc., 29, 967-973. http://dx.doi.org/10.1016/j.matpr.2020.04.144
[168] Chouke, P. B., Shrirame, T., Potbhare, A. K., Mondal, A., Chaudhary, A. R., Mondal, S., Chaudhary, R. G. (2022). Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv., 16, 100314. https://doi.org/10.1016/j.mtadv.2022.100314
[169] Umekar, M. S., Bhusari, G. S., Potbhare, A. K., Mondal, A., Kapgate, B. P., Desimone, M. F., & Chaudhary, R. G. (2021). Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotechnol., 22(13),1759-1781. http://dx.doi.org/10.2174/1389201022666201231115826
[170] Chaudhary, R.G., Mahmood, S., Jotania, R.B. (2023). Green nanomaterials for clean and sustainable environment. Curr. Nanosci. 19(6): 746-747. doi.org/10.2174/157341371906230511103527
[171] Chouke, P. B., Dadure, K. M., Potbhare, A. K., Bhusari, G. S., Mondal, A., Chaudhary, K., … & Masram, D. T. (2022). Biosynthesized δ-Bi2O3 nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking. ACS Omega, 7(24): 20983-20993. https://doi.org/10.1021%2Facsomega.2c01745
[172] Sonkusare, V. N., Chaudhary, R. G., Bhusari, G. S., Mondal, A., Potbhare, A. K., Mishra, R. K., Abdala, A. A. (2020). Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega, 5(14), 7823-7835. https://doi.org/10.1021%2Facsomega.9b03998
[173] C. Wang, M. Cao, P. Wang, Y. Ao, J. Hou and J. Qian, Preparation of graphene–carbon nanotube-TiO2 compo sites with enhanced photocatalytic activity for the removal of dye and Cr(VI), Appl. Catal., A, 2014, 473, 83–89. http://dx.doi.org/10.1016/j.apcata.2013.12.028
[174] L. Qu, G. Zhu, J. Ji, T. Yadav, Y. Chen and G. Yang, et al., Recyclable visible light-driven Og-C3N4/graphene oxide/ N-carbon nanotube membrane for efficient removal of organic pollutants, ACS Appl. Mater. Interfaces, 2018, 10(49), 42427–42435. https://doi.org/10.1021/acsami.8b15905
[175] G. Yi, Z. Chang, G. Liu and L. Yang, In situ fabrication of copper nanocubes with platinum skin on 3D graphene carbon nanotubes hybrid for efficient methanol electrooxidation, Int. J. Electrochem. Sci., 2019, 14, 7232–7240. https://doi.org/10.20964/2019.08.25
[176] X. T. Tran, M. Hussain and H. T. Kim, Facile and fast synthesis of a reduced graphene oxide/carbon nanotube/ iron/silver hybrid and its enhanced performance in cata lytic reduction of 4-nitrophenol, Solid State Sci., 2020, 100, 106107. https://doi.org/10.1016/j.solidstatesciences.2019.106107
[177] M. Kotal, A. Sharma, S. Jakhar, V. Mishra, S. Roy and S. C. Sahoo, et al., Graphene-Templated Cobalt Nanopar ticle Embedded Nitrogen-Doped Carbon Nanotubes for Efficient Visible-Light Photocatalysis, Cryst. Growth Des., 2020, 20(7), 4627–4639. https://doi.org/10.1021/acs.cgd.0c00430
[178] Simon, J., Flahaut, E. and Golzio, M., 2019. Overview of carbon nanotubes for biomedical applications. Materials, 12(4), p.624. https://doi.org/10.3390/ma12040624
[179] Oskoueian, Arshin, Khamirul Amin Matori, Saadi Bayat, Ehsan Oskoueian, Farhad Ostovan, and Meysam Toozandehjani. “Fabrication, characterization, and functionalization of single-walled carbon nanotube conjugated with tamoxifen and its anticancer potential against human breast cancer cells.” J. Nanomater. 2018 (2018): 1-13. https://doi.org/10.1155/2018/8417016
[180] Ahmed, Duha S., Mustafa KA Mohammed, and Mohammad R. Mohammad. “Sol–gel synthesis of Ag-doped titania-coated carbon nanotubes and study their biomedical applications.” Chem.l Pap.74, no. 1 (2020): 197-208. https://doi.org/10.1007/s11696-019-00869-9
[181] Yuan, X., Zhang, X., Sun, L., Wei, Y., & Wei, X. (2019). Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol., 16(1), 1-27. https://doi.org/10.1186/s12989-019-0299-z
[182] Sheikhi, Masoome, Siyamak Shahab, Mehrnoosh Khaleghian, and Rakesh Kumar. “Interaction between new anti-cancer drug syndros and CNT (6, 6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigation.” Appl. Surf. Sci. 434 (2018): 504-513. https://doi.org/10.1016/j.apsusc.2017.10.154
[183] Chen, Chao, Rui Ran, Zhiyu Yang, Ruitao Lv, Wanci Shen, Feiyu Kang, and Zheng-Hong Huang. “An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres.” Sens. Actuators B: Chem. 256 (2018): 63-70. https://doi.org/10.1016/j.snb.2017.10.067
[184] Wee, Youngho, Seunghwan Park, Young Hyeon Kwon, Youngjun Ju, Kyung-Min Yeon, and Jungbae Kim. “Tyrosinase-immobilized CNT based biosensor for highly-tt 6`sensitive detection of phenolic compounds.” Biosens. Bioelectron. 132 (2019): 279-285. https://doi.org/10.1016/j.bios.2019.03.008
[185] Singh, Chandan, Saurabh Srivastava, Md Azahar Ali, Tejendra K. Gupta, Gajjala Sumana, Anchal Srivastava, R. B. Mathur, and Bansi D. Malhotra. “Carboxylated multiwalled carbon nanotubes-based biosensor for aflatoxin detection.” Sens. Actuators B: Chem. 185 (2013): 258-264. https://doi.org/10.1016/j.snb.2013.04.040