Biomedical applications of green synthesized cerium oxide nanoparticles
Sarita Rai, Preeti Gupta, N. B. Singh
Nanotechnology has emerged as a pivotal domain in the realm of science and technology, finding diverse applications across electronics, imaging, industry, and healthcare. In the healthcare sector, nanotechnology has proven instrumental in disease diagnostics, treatment, drug delivery, and the formulation of innovative pharmaceuticals. Among the myriad nanoparticles (NPs), Cerium Oxide (CeO2) NPs stand out due to their distinctive surface chemistry, robust stability, and biocompatibility. Recent advancements have witnessed the synthesis of CeO2 NPs through various bio-directed methods, leveraging natural and organic matrices as stabilizing agents. This approach aims to create biocompatible CeO2 NPs, thereby addressing safety concerns and establishing conducive conditions for their efficacious utilization in biomedicine. In the pursuit of green synthesis, CeO2 NPs have been successfully generated using plant extracts, microbial organisms, and other biological derivatives. Plants have proven to be a highly efficient source owing to their abundance, inherent safety, and rich reservoir of reducing and stabilizing agents. Different parts of plants, including leaves, flowers, and stems, have been harnessed for synthesizing CeO2 NPs, with a predominant focus on leaves in existing green synthesis studies. Characterization of the synthesized NPs has been accomplished through various techniques such as UV spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Field-emission scanning electron microscopy (FESEM), Thermal methods (TG/DTA), and powder X-ray diffraction (PXRD) techniques. The applications of CeO2 NPs across diverse biological fields have been explored and discussed in this context.
Keywords
Nanomaterials, Biomedical, Green Method, Drug
Published online 10/20/2024, 24 pages
Citation: Sarita Rai, Preeti Gupta, N. B. Singh, Biomedical applications of green synthesized cerium oxide nanoparticles, Materials Research Foundations, Vol. 169, pp 173-196, 2024
DOI: https://doi.org/10.21741/9781644903261-7
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] A.P. F. Isabela, C. C.L. Santos, A. L. Xavier, T. M. Batista, Y. M. Nascimento, J.M.F.F. Nunes, P.M.F. Silva, R. A. Menezes-Ju’nior, J. M. Ferreira, E. O. Lima, J. F. Tavares, M. V. Sobral, D. Keyson, F. C. Sampaio, Synthesis, physicochemical characterization, antifungal activity and toxicological features of cerium oxide nanoparticles, Arabian Journal of Chemistry, 14 (2021) 102888. https://doi.org/10.1016/j.arabjc.2020.10.035
[2] S Deshpande, S Patil, SV Kuchibhatla, S. Seal Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87(13) (2005)133113. https://doi.org/10.1063/1.2061873
[3] NP Sardesai, M Ganesana, A Karimi, JC Leiter, S Andreescu, Platinumdopedceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal. Chem. 87 (2015) 2996-3003. https://doi.org/10.1021/ac5047455
[4] A. Mondal, M.S. Umekar, G.S. Bhusari, P.B. Chouke, T. Lambat, S. Mondal, R.G. Chaudhary, S.H. Mahmood, Biogenic synthesis of metal/metal oxide nanostructured materials, Curr. Pharm. Biotechnol. 22 (13) 2021, 1782-1793. https://doi.org/10.2174/1389201022666210111122911
[5] N.B. Singh, R.G. Chaudhary, M.F. Desimone, A. Agrawal, S.K. Shukla, Green synthesized nanomaterials for safe technology in sustainable agriculture, Curr. Pharm. Biotechnol. 24 (2023) 61-85. https://doi.org/10.2174/1389201023666220608113924. https://doi.org/10.2174/1389201023666220608113924
[6] C. Jianrong, M Yuqing, H Nongyue et al. Nanotechnology and biosensors. Biotechnol Adv. 22(7) (2004) 505-518. doi:10.1016/j. biotechadv.2004.03.004 https://doi.org/10.1016/j.biotechadv.2004.03.004
[7] Haotian Xu, Shiqi Li, XiaoxuanMa , Tingting Xue, Fang Shen, Yi Ru, Jingsi Jiang , Le Kuai, Bin Li, Hang Zhao, Xin Ma, Cerium oxide nanoparticles in diabetic foot ulcer management: Advances, limitations, and future directions, Colloids and Surfaces B: Biointerfaces, 231 (2023) 113535. https://doi.org/10.1016/j.colsurfb.2023.113535
[8] R. Tomar, A. A. Abdala, R.G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials, Materials Today: Proceedings, 29, (2020), 967-973. https://doi.org/10.1016/j.matpr.2020.04.144
[9] A.P. Farias, Carlos C.L. Santos a , Aline L. Xavier a , Tatianne M. Batista a , Yuri M. Nascimento a , Jocianelle M.F.F. Nunes a , Patrı’cia M.F. Silva b , Raimundo A. Menezes-Ju’nior a , Jailson M. Ferreira c , Edeltrudes O. Lima a , Josean F. Tavares a , Marianna V. Sobral a , Dawy Keyson a , Fa’bio C. Sampaio aVjvi, Arabian Journal of Chemistry 14, (2021) 102888 https://doi.org/10.1016/j.arabjc.2020.10.035
[10] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A.R. Rai, H.D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles, Nano-Structures & Nano-Objects, 13 (2018), 121-131. https://doi.org/10.1016/j.nanoso.2018.01.002
[11] J.A. Tanna, R.G. Chaudhary, H.D. Juneja, N.V. Gandhare, A.R. Rai, Histidine-capped ZnO nanoparticles: an efficient synthesis, spectral characterization and effective antibacterial activity, BioNanoScience, 5 (2015) 123-134. https://doi.org/10.1007/s12668-015-0170-0
[12] M.S. Nagmote, A.R. Rai, R. Sharma, M.F. Desimone, R.G. Chaudhary, NB Singh, Bioremediation of heavy metals using microorganisms, Genetically engineered organisms in bioremediation, CRC Press, 2024, pp.168-190. https://doi.org/10.1201/9781003188568-11
[13] N. Sanvicens, M. P. Marco, Multifunctional nanoparticles-properties and prospects for their use in human medicine, Trends Biotech., 26, (8),( 2008) 425-433. https://doi.org/10.1016/j.tibtech.2008.04.005
[14] S.T. Yerpude, A.K. Potbhare, P.R. Bhilkar, P. Thakur, P. Khiratkar, M.F. Desimone, P.R. Dhongle, S.S. Sonawane, C. Goncalves and R.G. Chaudhary, Computational analysis of nanofluids-based drug delivery system: Preparation, current development and applications of nanofluids, Applications of Nanofluids in Chemical and Bio-medical Process Industry, Elsevier, 2022, pp. 335-364. https://doi.org/10.1016/B978-0-323-90564-0.00014-3
[15] S.T. Yerpude, A.K. Potbhare, P. Bhilkar, A.R. Rai, R.P. Singh, A.A. Abdala, R. Adhikari, R. Sharma, R.G. Chaudhary, Biomedical and clinical applications of platinum-based nanohybrids: An update review, Environmental Research, 231 (2023) 116148. https://doi.org/10.1016/j.envres.2023.116148
[16] H.Bridle, Nanotechnology for Detection of Waterborne Pathogens. In Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2014; pp. 291-318. Nanomaterials, 10, (2020)) 1614 13 of 15 https://doi.org/10.1016/B978-0-444-59543-0.00009-8
[17] S. Chigurupati, M.R. Mughal, E. Okun, S. Das, A. Kumar, M. McCaffery, S. Seal, M.P. Mattson, Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomater. 34 (2013), 2194-2201. https://doi.org/10.1016/j.biomaterials.2012.11.061
[18] H. Choi, K. Lee, N. Hur, H. Lim, Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry, Anal. Chim. Acta, 847 (2014) 10-15. https://doi.org/10.1016/j.aca.2014.08.041
[19] C.Coman, L.F. Leopold, O.D. Rugină, L. Barbu-Tudoran, N. Leopold, M. Tofană, C. Socaciu, Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate. J. Nanoparticle Res. 16 (2014) 2158. https://doi.org/10.1007/s11051-013-2158-4
[20] M.S.Wason, J.Colon, S. Das, S. Seal, J. Turkson, J. Zhao, C.H. Baker, Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomed. Nanotechnol. Biol. Med., 9 (2013) 558-569. https://doi.org/10.1016/j.nano.2012.10.010
[21] M. Hosseini, M. Mozafari, Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials, 13, (2020) 3072. https://doi.org/10.3390/ma13143072
[22] T. Mori, D.R. Ou, J. Zou, J.Drennan, Present status and future prospect of design of Pt-cerium oxide electrodes for fuel cell applications, Prog. Nat. Sci. Mater. Int., 22 (2012) 561-571. https://doi.org/10.1016/j.pnsc.2012.11.010
[23] V.A.M. Selvan, R.Anand, M. Udayakumar, Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine, Fuel, 130 (2014) 160-167. https://doi.org/10.1016/j.fuel.2014.04.034
[24] K. Kandhasamy, K. Premkumar, Fabrication of Cerium Oxide Nanoparticles with Improved Antibacterial Potential and Antioxidant Activity, Biosci. Biotech. Res. Asia, 20(2) (2023), 487-497. https://doi.org/10.13005/bbra/3104
[25] L. Ghibelli, S. Mathu, Biological interactions of oxide nanoparticles: The good and the evil. Mrs Bulletin. 39(11) (2014) 949-54. https://doi.org/10.1557/mrs.2014.250
[26] C. Bouzigues, T.Gacoin A. Alexandrou, Biological applications of rare-earth based nanoparticles, Acs Nano, 5 (2011) 8488-8505. https://doi.org/10.1021/nn202378b
[27] S.K. Tarik Aziz, M. Awasthi, S. Guria, M. Umekar, I. Karajagi, S. K. Riyajuddin, K. V. R. Siddhartha, A. Saini, A.K. Potbhare, R.G. Chaudhary, V. Vishal, P. C. Ghosh, A. Dutta, Electrochemical water splitting by a bidirectional electrocatalyst, STAR Protocols, 2023, 4, 102448. https://doi.org/10.1016/j.xpro.2023.102448
[28] R.G. Chaudhary, P.B. Chouke, R.Bagade, A.K. Potbhare, Molecular docking and antioxidant activity of Cleome simplicifolia assisted synthesis of cerium oxide nanoparticles, Mater. Today: Procs, 29 (4), (2020) 1085-1090: doi.org/10.1016/j.matpr.2020.05.062. https://doi.org/10.1016/j.matpr.2020.05.062
[29] X. Beaudoux, M. Virot, Chave T, Durand G, Leturcq G, Nikitenko SI. Vitamin C boosts ceria-based catalyst recycling. Green Chem.18(2016) 3656-3668. https://doi.org/10.1039/C6GC00434B
[30] C. Xu, X. Qu Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 6, (2014) 90. https://doi.org/10.1038/am.2013.88
[31] S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal Cerium oxide nanoparticles: applications and prospects in nanomedicine, Nanomedicine (Lond). 8(9), (2013) 1483-1508. https://doi.org/10.2217/nnm.13.133
[32] S. Deshpande, S. Patil, S.V. Kuchibhatla, S.Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 87(13), (2005), 33113. https://doi.org/10.1063/1.2061873
[33] I.Celardo, J. Z.Pedersen, E.Traversa, L.Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, (2011) 1411-1420. https://doi.org/10.1039/c0nr00875c
[34] Can Xu, Youhui Lin, Jiasi Wang, Li Wu, Weili Wei, Jinsong Ren, Xiaogang Qu,. Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv. Healthcare Mater. 2(2013) 1591-1599. https://doi.org/10.1002/adhm.201200464
[35] M. Li, P. Shi, C. Xu, J. S. Ren, X. G. Qu, Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem. Sci. 4, (2013), 2536-2542. https://doi.org/10.1039/c3sc50697e
[36] A. Asati, S. Santra, C. Kaittanis, S. Nath, J. M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48, (2009) 2308-2312. https://doi.org/10.1002/anie.200805279
[37] A. Asati, C. Kaittanis, S. Santra, J. M. Perez, pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal. Chem. 83, (2011), 2547-2553. https://doi.org/10.1021/ac102826k
[38] X. Li, L. Sun, A. Ge, Y. Guo, Enhanced chemiluminescence detection of thrombin based on cerium oxide nanoparticles. Chem. Commun. 47, (2011), 947-949. https://doi.org/10.1039/C0CC03750H
[39] C. Kaittanis, S. Santra, A. Asati, J. M. Perez, A cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging. Nanoscale (2012), 2117-2123. https://doi.org/10.1039/c2nr11956k
[40] Umekar, M. S., Chaudhary, R. G., Bhusari, G. S., Mondal, A., Potbhare, A. K., & Sami, M. (2020). Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract. Materials Today: Proceedings, 29, 709-714. https://doi.org/10.1016/j.matpr.2020.04.169
[41] Y. H. Lin, C. Xu, J. S. Ren, X. G. Qu, Using Thermally Regenerable Cerium Oxide Nanoparticles In Biocomputing To Perform Label-Free, Resettable, And Colorimetric Logic Operations. Angew. Chem. Int. Ed. 51, (2012) 12579-12583. https://doi.org/10.1002/anie.201207587
[42] A. S. Karakoti, O. Tsigkou, S. Yue, , P. D. Lee, M. M.Stevens, J. R. Jones, S.Seal, Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20, (2010) 8912-8919. https://doi.org/10.1039/c0jm01072c
[43] Mohd Aslam Saifi, Sudipta Seal, Chandraiah Godugu, Nanoceria, the versatile nanoparticles: Promising biomedical applications, Journal of Controlled Release 338 (2021)168-189 https://doi.org/10.1016/j.jconrel.2021.08.033
[44] A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C Mater. Biol. Appl., 49: (2015) 408-415. 34. https://doi.org/10.1016/j.msec.2015.01.042
[45] S.K. Kannan, M. Sundrarajan, A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity, Int. J. Nanosci. 13(03), (2014)1450018. https://doi.org/10.1142/S0219581X14500185
[46] G.S. Priya, A. Kanneganti, K.A. Kumar, K.V. Rao, S. Bykkam, Bio synthesis of cerium oxide nanoparticles using Aloe arbadensis Miller Gel. Int. J. Sci. Res. Publications.;4(6) (2014) 1.
[47] S.K. Tarik Aziz, M. Umekar, I. Karajagi, S.K. Riyajuddin, K.V.R. Siddhartha, A. Saini, A.K. Potbhare, R.G. Chaudhary, V. Vishal, P.C. Ghosh, A. Dutta. A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting, Cell Reports: Physical Science, 2022, 3(11) 101106. https://doi.org/10.1016/j.xcrp.2022.101106
[48] M. Darroudi, M. Sarani, R. Kazemi Oskuee, A. Khorsand Zak, H.A. Hosseini, L. Gholami, Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceramics Int. 40(1, Part B) (2014), 2041-2045. https://doi.org/10.1016/j.ceramint.2013.07.116
[49] H Kargar, H. Ghazavi, M.Darroudi Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceramics Int.,41(3, Part A): (2015), 4123-4128. https://doi.org/10.1016/j.ceramint.2014.11.108
[50] M. Darroudi, Hoseini SJ, Kazemi Oskuee R, Hosseini HA, Gholami L, Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceramics Int.,40(5): (2014), 7425-7430. https://doi.org/10.1016/j.ceramint.2013.12.089
[51] P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, R. Sharma, R.G. Chaudhary, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Mater. Today Adv. 16(2022) 100314. https://doi.org/10.1016/j.mtadv.2022.100314
[52] L. Qi, J. Fresnais, P. Mullera, O. Theodoly, F. Berretb, P. Chapel. Interfacial activity of phosphonated-polyethylene glycol functionalized cerium oxide nanoparticles. Langmuir; 28(31) (2012)11448-11456. https://doi.org/10.1021/la302173g
[53] A. Kaushik, P.R. Solanki, M.K. Pandey, S. Ahmad, B.D. Malhotra. Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Appl Phys Lett., 95(17), (2009), 173703. https://doi.org/10.1063/1.3249586
[54] Y.H. Liu, et al., Synthesis and character of cerium oxide (CeO₂) nanoparticles by the precipitation method, Metalurgija, 53 (4) (2014) 463-465.
[55] Q. L. Zhang, Y. M. Zhi, B. J. Ding, Synthesis of nanoceria by the precipitation method, Mater. Sci. Forum, Trans Tech Publications, vol. 610, (2009). https://doi.org/10.4028/www.scientific.net/MSF.610-613.233
[56] P. Kavitha, et al., Synthesis and characterization of nanoceria by using rapid precipitation method, PARIPEX-Indian J. Res. 4 (12) (2016).
[57] M. Farahmandjou, M. Zarinkamar, T.P. Firoozabadi, Synthesis of cerium oxide (CeO₂) nanoparticles using simple CO-precipitation method, Rev. Mex. Fis. 62,(2016) 496-499
[58] K.K. Babitha, et al., Structural characterization and optical studies of CeO₂ nanoparticles synthesized by chemical precipitation, Indian J. Pure Appl. Phys. (IJPAP) 53 (9) (2015) 596-603.
[59] J. Ketzial, A. Jasmine, S. Nesaraj, Synthesis of CeO₂ nanoparticles by chemical precipitation and the effect of a surfactant on the distribution of particle sizes, J. Ceram. Process. Res. 12 (1) (2011) 74-79.
[60] B.S. Shirke, et al., Synthesis of nanoceria by microwave technique using propylene glycol as a stabilizing agent, J. Mater. Sci. Mater. Electron. 22 (2) (2011) 200-203. https://doi.org/10.1007/s10854-010-0114-y
[61] Siba Soren, et al., Antioxidant potential and toxicity study of the nanoceria synthesized by microwave-mediated synthesis, Appl. Biochem. Biotechnol. 177 (1) (2015) 148-161. https://doi.org/10.1007/s12010-015-1734-8
[62] D. V. Pinjari, A. B. Pandit, Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method, Ultrason. Sonochem. 18 (5) (2011) 1118-1123. https://doi.org/10.1016/j.ultsonch.2011.01.008
[63] Lunxiang Yin, et al., Sonochemical synthesis of nanoceria-effect of additives and quantum size effect, J. Colloid Interface Sci. 246 (1) (2002) 78-84. https://doi.org/10.1006/jcis.2001.8047
[64] S. I. Mutinda, Hydrothermal synthesis of shape/size-controlled cerium-based oxides, Dissertations, Youngstown State University, (2013).
[65] O. Kepenekci, Hydrothermal preparation of single crystalline CeO₂ nanoparticles and the influence of alkali hydroxides on their structure and optical behavior, MS Thesis, İzmir Institute of Technology (2009).
[66] T. Masui, et al., Synthesis of nanoceria by hydrothermal crystallization with citric acid, J. Mater. Sci. Lett. 21 (6) (2002) 489-491. https://doi.org/10.1023/A:1015342925372
[67] T. Masui, et al., Synthesis and characterization of nanoceria coated with turbostratic boron nitride, J. Mater. Chem. 13 (3) (2003) 622-627. https://doi.org/10.1039/b208109a
[68] M. Jalilpour, M. Fathalilou, Effect of aging time and calcination temperature on the nanoceria synthesis via reverse co-precipitation method, Int. J. Phys. Sci. 7 (6) (2012) 944-948. https://doi.org/10.5897/IJPS11.131
[69] F. Gao, Q. Lu, S. Komarneni, Fast synthesis of nanoceria and nanorods, J. Nanosci. Nanotechnol. 6 (12) (2006) 3812-3819. https://doi.org/10.1166/jnn.2006.609
[70] E.Alpaslan, M. B. Geilich; H. Yazici, T. Webster, pH-Controlled Cerium Oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth., J. Sci. Rep. 7 (2017) 45859. https://doi.org/10.1038/srep45859
[71] P. L. Chen, I.W. Chen, Reactive Cerium (IV) Oxide Powders by the Homogeneous Precipitation Method. J. Am. Ceram. Soc., 76, (1993) 1577-1583. https://doi.org/10.1111/j.1151-2916.1993.tb03942.x
[72] H.I. Chen, H.-Y. Chang, Synthesis of nanocrystalline cerium oxide particles by the Precipitation method. Ceram. Int., 31 (2005), 795-802. https://doi.org/10.1016/j.ceramint.2004.09.006
[73] M. Ramachandran, R. Subadevi, M. Sivakumar, Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum, 161, (2019), 220-224. https://doi.org/10.1016/j.vacuum.2018.12.002
[74] H.S. Nanda, Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine. Bioengineering ,3 ,28(2016) https://doi.org/10.3390/bioengineering3040028
[75] S.K. Nethi, H.S. Nanda, T.W. Steele, C.R. Patra, Functionalized nanoceria exhibit improved angiogenic properties. J. Mater. Chem. B, 5 (2017) 9371-9383. https://doi.org/10.1039/C7TB01957B
[76] F. Corsi, F. Caputo, E. Traversa, L. Ghibelli, Not Only Redox: The Multifaceted Activity of Cerium Oxide Nanoparticles in Cancer Prevention and Therapy. Front. Oncol., 8 (2018), 309. https://doi.org/10.3389/fonc.2018.00309
[77] A. Arya, N.K. Sethy, M. Das, S.K. Singh, A. Das, S.K. Ujjain, R.K. Sharma, M. Sharma, K. Bhargava, Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential. Free Radic Res. 48, (2014, 784-793. https://doi.org/10.3109/10715762.2014.906593
[78] T. Masui, Characterization of Cerium (IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles. Chem. Mater., 9 (1997), 2197-2204. https://doi.org/10.1021/cm970359v
[79] A. Cimini, B. D’Angelo, S. Das, R. Gentile, E. Benedetti, V.Singh, A.M. Monaco, S. Santucci, S. Seal, Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathway, Acta Biomater, 8 (2012), 2056-2067. https://doi.org/10.1016/j.actbio.2012.01.035
[80] J.M. López, A.L. Gilbank, T. García, B. Solsona, S. Agouram, L. M. Torrente-, The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl. Catal. B Environ., 174, (2015), 403-412. https://doi.org/10.1016/j.apcatb.2015.03.017
[81] A.I.Y. Tok, Hydrothermal synthesis of CeO2 nano-particles. J. Mater. Process. Technol., 190, (2007)217-222. https://doi.org/10.1016/j.jmatprotec.2007.02.042
[82] I. Trenque, G.C. Magnano, M.A. Bolzinger, L. Roiban, F. Chaput, I. Pitault, S. Briançon, T.Devers, K. Masenelli-Varlot, M. Bugnet, et al. Shape-selective synthesis of nanoceria for degradation of paraoxon as a chemical warfare simulant. Phys. Chem. Chem. Phys., 21, (2019), 5455-5465. https://doi.org/10.1039/C9CP00179D
[83] H. Zhang, X.He, Z. Zhang, P.Zhang, Y. Li, Y.Ma, Y.Kuang, Y. Zhao, Z. Chai, Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Env. Sci. Technol., 45, (2011) 3725-3730. https://doi.org/10.1021/es103309n
[84] S. Soren, S.R. Jena, L. Samanta, P. Parhi, Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave-mediated synthesis. Appl. Biochem. Biotechnol., 177, (2015), 148-161. https://doi.org/10.1007/s12010-015-1734-8
[85] S. Machmudah, S. Winardi, H. Kanda, M. Goto, Synthesis of Ceria Zirconia Oxides using Solvothermal Treatment. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France (2018). https://doi.org/10.1051/matecconf/201815605014
[86] T. Yu, J. Joo, Y.I. Park, T. Hyeon, Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew. Chem. Int. Ed. Engl., 44, (2005), 7411-7414. https://doi.org/10.1002/anie.200500992
[87] M. Darroudi, Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram. Int., 40, (2014) 2041-2045. https://doi.org/10.1016/j.ceramint.2013.07.116
[88] B.Elahi, M. Mirzaee, M.Darroudi, K. Sadri, R.K. Oskuee, Bio-based synthesis of Nano-Ceria and evaluation of its bio-distribution and biological properties, Colloids Surf. B Biointerfaces, 181, (2019),830-836. https://doi.org/10.1016/j.colsurfb.2019.06.045
[89] S.Gnanam, V. Rajendran, Synthesis of CeO2 or α-Mn2O3 nanoparticles via sol-gel process and their optical properties. J. Solgel Sci. Technol., 58, (2011) 62-69. https://doi.org/10.1007/s10971-010-2356-9
[90] E. Nourmohammadi, Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line. Ceram. Int., 44, (2018) 19570-19575. https://doi.org/10.1016/j.ceramint.2018.07.201
[91] P. Chouke, A. Potbhare, K. Dadure, A. Mungole, N. Meshram, R. Chaudhary, A. Rai, R. Chaudhary, An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay, Materials Today: Proceedings, 29 (2020) 815-821. https://doi.org/10.1016/j.matpr.2020.04.758
[92] P. B Chouke, A. K Potbhare, G. S Bhusari, S. Somkuwar, D. PMD Shaik, R. K Mishra, R. Gomaji Chaudhary, Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity, Advanced Materials Letters, 10 (2019) 355-360. https://doi.org/10.5185/amlett.2019.2235
[93] M. Umekar, R. Chaudhary, G. Bhusari, A. Potbhare, Fabrication of zinc oxide-decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum, Emerging Materials Research, 10 (2021) 75-84. https://doi.org/10.1680/jemmr.19.00175
[94] Al-Qudah Tamara, M.H. Sami, Abu-Zurayk Rund, Shibli Rida, Khalaf Aya, T.L. Lambat, R.G. Chaudhary, Nanotechnology applications in plant tissue culture and molecular genetics: a holistic approach, Current Nanoscience, 18 (4) (2022) 442-464. https://doi.org/10.2174/1573413717666211118111333
[95] A. Haldar, K.M. Dadure, D. Mahapatra, R.G. Chaudhary, Natural extracts-mediated biosynthesis of Zinc Oxide nanoparticles and their multiple pharmacotherapeutic perspectives, Jordan Journal of Physics, 15 (2022) 67-79. https://doi.org/10.47011/15.1.10
[96] R. G. Chaudhary, N. B. Singh, A. R. Daddemal-Chaudhary and Rohit Sharma, Review on Agrobiowaste-mediated nanohybrids for removal of toxic heavy metals from wastewater, ChemistrySelect, 2024, 9(4) e202304230. https://doi.org/10.1002/slct.202304230. https://doi.org/10.1002/slct.202304230
[97] A.K. Potbhare, R.G. Chaudhary, P.B. Chouke, S.Yerpude, A. Mondal, V.N. Sonkusare, A.R. Rai, H.D. Juneja. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Materials Science and Engineering: C 99 (2019): 783-793. https://doi.org/10.1016/j.msec.2019.02.010
[98] Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas, T.Jan, Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract, Int. J. Nanomed. 11 (2016) 5015-5025. https://doi.org/10.2147/IJN.S113508
[99] J. Malleshappa, H. Nagabhushana, S. C. Sharma, Y.S. Vidya, K.S. Anantharaju, S. C. Prashantha, B. Daruka Prasad, H. Raja Naika, K. Lingaraju, B. S. Surendra, Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, Photoluminescent, Photocatalytic and Antibacterial properties DOI: http://dx.doi.org/10.1016/j.saa.(2015),04.073
[100] VV Makarov, SS Makarova, AJ Love, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir; 30(20): (2014), 5982-8 https://doi.org/10.1021/la5011924
[101] А. M. Korotkova, P. O. Borisovna, G. I. Aleksandrovna et al., Green Synthesis of Cerium Oxide Particles in Water Extracts Petroselinum crispum, Current Nanomaterials, 4, (2019)176-190. https://doi.org/10.2174/2405461504666190911155421
[102] T. Arunachalam, M. Karpagasundaram, N. Rajarathinam, Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties, Materials Science-Poland, 35(4), (2017), 791-798. https://doi.org/10.1515/msp-2017-0104
[103] F. Avadi, ME Yazdi Taghavizadeh, M. Baghani et al. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express 6(6)(2019). https://doi.org/10.1088/2053-1591/ab08ff
[104] P. Nithya, B Murugesan, J Sonamuthu, S Samayanan, S.Mahalingam Facile biological synthetic strategy to morphologically aligned CeO 2/ZrO 2 core nanoparticles using Justicia adhatoda extract and ionic liquid: enhancement of its bio-medical properties. J. Photochem. Photobiol B. (2017);178. https://doi.org/10.1016/j.jphotobiol.2017.11.036
[105] S. Nezhad, A Haghi, M. Homayouni Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities: green synthesis of nanoparticle. Appl. Organomet Chem. 34,(2019) 5314 https://doi.org/10.1002/aoc.5314
[106] R. Magudieshwaran, J. Ishii, KCN Raja, et al. Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett. 239 (2019) 40-44. https://doi.org/10.1016/j.matlet.2018.11.172
[107] P Nithya, B Murugesan, J Sonamuthu, S Samayanan, S.Mahalingam [BMIM] PF6 ionic liquid mediated green synthesis of ceramic SrO/ CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities. Ceramic Int. (2019).
[108] A Singh, I. Hussain, NB Singh, et al. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicol Environ Saf.;182:109410. https://doi.org/10.1016/j.ecoenv.2019.109410
[109] D. Pinheiro, KR Sunaja Devi, A Jose, et al. Experimental design for optimization of 4-nitrophenol reduction by green synthesized CeO2/ g-C3N4/Ag catalyst using response surface methodology. J. Rare Earths. doi:10.1016/j.jre.(2019)10.001
[110] I. M. Sultan, MH Aziz, M Fatima et al. Green synthesis, cytotoxicity, antioxidant and photocatalytic activity of CeO2 nanoparticles mediated via orange peel extract (OPE). Mater Res Express. (2019)
[111] J. Malleshappa, H Nagabhushana, SC Prashantha, et al. Eco-friendly green synthesis, structural and photoluminescent studies of CeO2: eu3+nanophosphors using E. tirucalli plant latex. J. Alloys Compd. 612 (2014) 425-434. https://doi.org/10.1016/j.jallcom.2014.05.101
[112] LS Reddy Yadav, K Manjunath, B,Archana et al. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur Phys J Plus. 131(5):154. https://doi.org/10.1140/epjp/i2016-16154-y
[113] S Maensiri, S Labuayai, P Laokul, et al. Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn J Appl Phys. 53(6S):06JG14. https://doi.org/10.7567/JJAP.53.06JG14
[114] E. Behrouz, M. Mahdi, D. Majid, R. K. Oskuee, K. Sadri, L.eila Gholami Role of oxygen vacancies on photo-catalytic activities of green synthesized ceria nanoparticles in Cydonia oblonga miller seeds extract and evaluation of its cytotoxicity effects PII: S0925-8388(19)33799-5. https://doi.org/10.1016/j.jallcom.(2019)152553
[115] Behrouz Elahi, Mahdi Mirzaee, Majid Darroudi, Reza Kazemi Oskuee, Kayvan Sadri, Mohammad Sadegh Amiri Preparation of Cerium Oxide Nanoparticles in Salvia MacrosiphonBoiss seeds Extract and Investigation of Their Photo-catalytic Activities PII: S0272-8842(18)33291. https://doi.org/10.1016/j.ceramint.(2018)11.173
[116] F. Sadat Sangsefidi, M. Nejati, J. Verdi, M. Salavati-Niasari, Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. Journal of Cleaner Production, 156 (2017) 741e749. https://doi.org/10.1016/j.jclepro.2017.04.114
[117] M Darroudi, SJ Hoseini, R Kazemi Oskuee, et al. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram Int. 2014;40(5):7425-7430. doi:10.1016/j. ceramint.2013.12.089. https://doi.org/10.1016/j.ceramint.2013.12.089
[118] H Kargar, H Ghazavi, M Darroudi. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram Int. 2015;41(3):4123-4128. doi:10.1016/j.ceramint.2014.11. https://doi.org/10.1016/j.ceramint.2014.11.108
[119] I. Milenković, K. Radotić, B. Matović, M. Prekajski, L. Živković, D. Jakovljević, G. Gojgić-Cvijović, V. Beškoski, Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating J. Serb. Chem. Soc. 83 (6) (2018)745-757. https://doi.org/10.2298/JSC171205031M
[120] M Darroudi, MB Ahmad, AH Abdullah, NA. Ibrahim Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomedicine. 6:5(2011)69-574. https://doi.org/10.2147/IJN.S16867
[121] H Kargar, F Ghasemi, M.Darroudi Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics Int. 41(1, Part B) (2015)1589-1594. https://doi.org/10.1016/j.ceramint.2014.09.095
[122] JM Perez, A Asati, S Nath, C Kaittanis Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4: (2008) 552-556. https://doi.org/10.1002/smll.200700824
[123] A Sehgal, Y Lalatonne, JF Berret, M Morvan, Precipitationre dispersion of cerium oxide nanoparticles with poly (acrylic acid): toward stable dispersions. Langmuir, 21(2005) 9359-9364. https://doi.org/10.1021/la0513757
[124] AS Karakoti, S Singh, A Kumar, M Malinska, SVNT Kuchibhatla, K Wozniak, WT Self, S Seal, PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 131 (2009)14144-14145. https://doi.org/10.1021/ja9051087
[125] L Qi, J Fresnais, P Muller, O Theodoly, J-F Berret, J-P Chapel Interfacial activity of phosphonated-peg functionalized cerium oxide nanoparticles. Langmuir 28:(2012)11448-11456. https://doi.org/10.1021/la302173g
[126] JA Vassie, JM Whitelock, MS Lord Targeted delivery and redox activity of folic acid-functionalized nanoceria in tumor cells. Mol Pharm 15(2018), 994-1004. https://doi.org/10.1021/acs.molpharmaceut.7b00920
[127] A. Rana, I. Hasan, B. Heun Koo, R. Ahmad Khan, Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 637, (2022), 128225. https://doi.org/10.1016/j.colsurfa.2021.128225
[128] M Darroudi, M Sarani, R Oskuee Kazemi A, Zak Khorsand, MS Amiri. Nanoceria: gum mediated synthesis and in vitro viability assay. Ceramics Int.40(2),(2014)2863-2868. https://doi.org/10.1016/j.ceramint.2013.10.026
[129] A Kaushik, PR Solanki, MK Pandey, S Ahmad, BD. Malhotra Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Appl Phys Lett. 95(17),(2009)173703. https://doi.org/10.1063/1.3249586
[130] H. Hassanneja, A.Nouri Synthesis and evaluation of self-healing cerium-doped chitosan nanocomposite coatings on AA5083-H321. Int J Electrochem Sci. 11(2016)2106-2118. https://doi.org/10.1016/S1452-3981(23)16086-X
[131] V. Shah, S.Shah , H. Shah, F. J. Rispoli, K. T. McDonnell, S. Workeneh , A. Karakoti, A. Kumar, Sudipta Seal, Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles.7 10 (2012) e47827. https://doi.org/10.1371/journal.pone.0047827
[132] V.V. Spiridonov, A. V. Sybachin, V. A. Pigareva, M. I. Afanasov, S. A. Musoev, A. V. Knotko, S. B. Zezin, One-Step Low Temperature Synthesis of CeO2 Nanoparticles Stabilized by carboxymethyl cellulose, Polymers 15,(2023) 1437. https://doi.org/10.3390/polym15061437
[133] R. Tekupalli Biosynthesis of Cerium Oxide Nanoparticles by Fungus Trichoderma viridae, International Journal of Pharmacy and Biological Sciences-IJPBSTM (1) (2019)718-724
[134] SA Khan, A.Ahmad Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull. 48 (10),(2013)4134-4138. https://doi.org/10.1016/j.materresbull.2013.06.038
[135] K Gopinath, V Karthika, C Sundaravadivelan, et al. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostructure Chem. 5(3)(2015):295-303. https://doi.org/10.1007/s40097-015-0161-2
[136] V S. Kunga, K Gopinath, NS Palani et al. Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: antibacterial and antibiofilm activity. RSC Adv. 6(2016) 42720-9. https://doi.org/10.1039/C6RA05003D
[137] S Munusamy, K Bhakyaraj, L Vijayalakshmi, A Stephen, V Narayanan, Synthesis and characterization of cerium oxide nanoparticles using Curvularialunata and their antibacterial properties. Int J Innov Res Sci Eng. 2(1)(2014)318.
[138] S. Balaji, B.K. Mandal, L. V. Kumar Reddy, D. Sen, Biogenic Ceria Nanoparticles (CeO2 NPs) for Effective Photocatalytic and Cytotoxic Activity, Bioengineering, 7(2020) 26. https://doi.org/10.3390/bioengineering7010026
[139] B. Bhushan, P. Gopinath. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater Chem B. 3(24) (2015)4843-4852. https://doi.org/10.1039/C5TB00572H
[140] T.Pirmohamed, J.M.Dowding,; S.Singh, B. Wasserman, E. Heckert, A.S. Karakoti,; J.E.King,; S.Seal, W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, (2010)2736-2738. https://doi.org/10.1039/b922024k
[141] P. Cohen, The origins of protein phosphorylation. Nat. Cell Biol. 2002, 4, E127 https://doi.org/10.1038/ncb0502-e127
[142] M. Das, S. Patil, N. Bhargava, J.-F. Kang, L. M. Riedel, S. Seal and J. J. Hickman, Biomaterials, 28 (2007),1918-192. https://doi.org/10.1016/j.biomaterials.2006.11.036