Synthesis and applications of nickel-based nanomaterials

$40.00

Synthesis and applications of nickel-based nanomaterials

Chiranjibi Dhakal, Samjhana Dahal, Prakash Lamichhane, Ratiram Chaudhary, Rameshwar Adhikari

Nanoparticles (NPs), due to their small size, exhibit unique and enhanced properties compared to bulk materials possessing potential applications in energy conversion technology, catalysis, environmental remediation, technological advancements, medicine, etc. In this chapter, we discuss the synthesis process of Nickel NPs (Ni-NPs) and nickel-based nanomaterials. The basic synthetic technique considering the bottom-up approach and top-down approach are discussed. ‘Green’ synthesis of Ni-NPs production is the central focus of the study because it promotes sustainability, enhances biocompatibility, and supports safer and more cost-effective methods. The extracts obtained from different parts of plants (such as Ocimum sanctum, Medicago sativa, Azadirachta Psidium guajava, etc.) are used for the biosynthesis of nickel-based NMs. It has been found that biosynthesized Ni-NPs constitute a broad spectrum of applications in antimicrobial, antileishmanial, anti-cancer, anti-diabetic activity, drug delivery, battery electrodes, wastewater management, and biosensors. Strategies are still to be developed to overcome the issues of disparity in particle size, stability, shapes, and nanoparticle yield.

Keywords
Nickel-based NMs, Green Synthesis, Plant Extract, Drug Delivery, Anti-Cancer

Published online 10/20/2024, 34 pages

Citation: Chiranjibi Dhakal, Samjhana Dahal, Prakash Lamichhane, Ratiram Chaudhary, Rameshwar Adhikari, Synthesis and applications of nickel-based nanomaterials, Materials Research Foundations, Vol. 169, pp 139-172, 2024

DOI: https://doi.org/10.21741/9781644903261-6

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] Forbes, R. J. (1965). Studies in ancient technology. 5 (Vol. 2). Brill Archive.
[2] Carter, B. (2021). Boom, Bust, Boom: a Story about Copper, the Metal that Runs the World. Simon and Schuster.
[3] Li, Z., Khajepour, A., & Song, J. (2019). A comprehensive review of the key technologies for pure electric vehicles. Energy, 182, 824-839. https://doi.org/10.1016/j.energy.2019.06.077
[4] Howard-White, F. B. (2024). Nickel: a historical review. Taylor & Francis. https://doi.org/10.4324/9781032638836
[5] Bide, T., Hetherington, L., & Gunn, G. (2008). Nickel.
[6] Golightly, J. P. (2010). Progress in understanding the evolution of nickel laterites. https://doi.org/10.5382/SP.15.2.07
[7] Teitler, Y., Cathelineau, M., Ulrich, M., Ambrosi, J. P., Munoz, M., & Sevin, B. (2019). Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites. Journal of Geochemical Exploration, 196, 131-155. https://doi.org/10.1016/j.gexplo.2018.10.009
[8] Naldrett, A. J. (2004). Magmatic sulfide deposits: geology, geochemistry and exploration. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-08444-1
[9] Tanaka, T., Montanari, G. C., & Mulhaupt, R. (2004). Polymer nanocomposites as dielectrics and electrical insulation: perspectives for processing technologies, material characterization, and future applications. IEEE Transactions on Dielectrics and Electrical Insulation, 11(5), 763-784. https://doi.org/10.1109/TDEI.2004.1349782
[10] Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2017). Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Analytica Chimica Acta, 960, 1-17. https://doi.org/10.1016/j.aca.2017.01.003
[11] Tang, C., Sprecher, B., Tukker, A., & Mogollón, J. M. (2021). The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy, 74, 102351. https://doi.org/10.1016/j.resourpol.2021.102351
[12] Anand, U., Carpena, M., Kowalska-Góralska, M., Garcia-Perez, P., Sunita, K., Bontempi, E. & Simal-Gandara, J. (2022). Safer plant-based NPs for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment, 821, 153472. https://doi.org/10.1016/j.scitotenv.2022.153472
[13] Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., … & Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2), 177. https://doi.org/10.3390/nano12020177
[14] Kaur, M., & Pal, K. (2019). Review on hydrogen storage materials and methods from an electrochemical viewpoint. Journal of Energy Storage, 23, 234-249. https://doi.org/10.1016/j.est.2019.03.020
[15] Chouke, PB., Potbhare, A.K., Meshram, N.P., Rai, M.M., Dadure, K.M., Chaudhary, K., Rai A.R., Desimone, M.F. Chaudhary, R.G. Masram, D.T. (2022) Bioinspired NiO nanospheres: Exploring in vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking, and proposed vacuolization mechanism. ACS Omega, 7(8) 6869-6884. https://doi.org/10.1021/acsomega.1c06544
[16] Pandian, C. J., Palanivel, R., & Dhananasekaran, S. (2015). Green synthesis of nickel NPs using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese Journal of Chemical Engineering, 23(8), 1307-1315. https://doi.org/10.1016/j.cjche.2015.05.012
[17] Patil, S. P., Chaudhari, R. Y., & Nemade, M. S. (2022). Azadirachta indica leaves mediated green synthesis of metal oxide NPs: A review. Talanta Open, 5, 100083. https://doi.org/10.1016/j.talo.2022.100083
[18] Rafique, M. A., Kiran, S., Jamal, A., Abrar, S., Jalal, F., & Rahman, N. (2023). Nickel NPs synthesized from Psidium guajava peels mediated degradation of Orange E3 dye reactive dye: a sustainable approach. International Journal of Environmental Science and Technology, 20(3), 2733-2744. https://doi.org/10.1007/s13762-022-04509-w
[19] Kudlur, D. S., Meghashree, A. M., Vinutha, S. A., Kumar, K. S., Karthik, G., Venkatesh, P. A., … & Mallikarjunaswamy, C. (2023). One pot synthesis of CuO-NiO-NPs using Aegle marmelos fruit extract and their antimicrobial activity. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.256
[20] Huang, Y., Zhu, C., Xie, R., & Ni, M. (2021). Green synthesis of nickel NPs using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. Journal of Experimental Nanoscience, 16(1), 368-381. https://doi.org/10.1080/17458080.2021.1975037
[21] Haq, S., Dildar, S., Ali, M. B., Mezni, A., Hedfi, A., Shahzad, M. I., … & Shah, A. (2021). Antimicrobial and antioxidant properties of biosynthesized of NiO-NPs using Raphanus sativus (R. sativus) extract. Materials Research Express, 8(5), 055006. https://doi.org/10.1088/2053-1591/abfc7c
[22] Ahmad, B., Khan, M. I., Naeem, M. A., Alhodaib, A., Fatima, M., Amami, M., … & Iqbal, M. (2022). Green synthesis of NiO-NPs using Aloe vera gel extract and evaluation of antimicrobial activity. Materials Chemistry and Physics, 288, 126363. https://doi.org/10.1016/j.matchemphys.2022.126363
[23] Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., & Darroudi, M. (2021). Green-based bio-synthesis of nickel oxide NPs in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chemistry Letters and Reviews, 14(2), 404-414. https://doi.org/10.1080/17518253.2021.1923824
[24] Kumar, M. S., Soundarya, T. L., Nagaraju, G., Raghu, G. K., Rekha, N. D., Alharthi, F. A., & Nirmala, B. (2021). Multifunctional applications of Nickel oxide (NiO) NPs synthesized by facile green combustion method using Limonia acidissima natural fruit juice. Inorganica Chimica Acta, 515, 120059. https://doi.org/10.1016/j.ica.2020.120059
[25] Boudiaf, M., Messai, Y., Bentouhami, E., Schmutz, M., Blanck, C., Ruhlmann, L., … & Mekki, D. E. (2021). Green synthesis of NiO-NPs using Nigella sativa extract and their enhanced electro-catalytic activity for the 4-nitrophenol degradation. Journal of Physics and Chemistry of Solids, 153, 110020. https://doi.org/10.1016/j.jpcs.2021.110020
[26] Din, M. I., Nabi, A. G., Rani, A., Aihetasham, A., & Mukhtar, M. (2018). Single step green synthesis of stable nickel and nickel oxide NPs from Calotropis gigantea: Catalytic and antimicrobial potentials. Environmental Nanotechnology, Monitoring & Management, 9, 29-36. https://doi.org/10.1016/j.enmm.2017.11.005
[27] Iqbal, J., Abbasi, B. A., Ahmad, R., Mahmoodi, M., Munir, A., Zahra, S. A., … & Capasso, R. (2020). Phytogenic synthesis of nickel oxide NPs (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomedicines, 8(5), 117. https://doi.org/10.3390/biomedicines8050117
[28] Lu, Y., Han, M., Shahri, E. E., Abbaspour, S., & Tayebee, R. (2023). Delivery of anti-cancer and anti-depression doxepin drug by nickel oxide NPs originated from the Cressa nudicaulis plant extract. RSC Advances, 13(18), 12133-12140. https://doi.org/10.1039/D2RA07545H
[29] Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., Karimian, M., Abbasi N., Ghaneialva, H., & Karimi, E. (2021). Green synthesis of NiO-NPs using Calendula officinalis extract: Chemical characterization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian Journal of Chemistry, 14(5), 103105. https://doi.org/10.1016/j.arabjc.2021.103105
[30] Reddy, P. L., Deshmukh, K., Kovářík, T., Reiger, D., Nambiraj, N. A., Lakshmipathy, R., & SK, K. P. (2020). Enhanced dielectric properties of green synthesized Nickel Sulphide (NiS) NPs integrated polyvinylalcohol nanocomposites. Materials Research Express, 7(6), 064007. https://doi.org/10.1088/2053-1591/ab955f
[31] Wang, Y., & Pang, H. (2018). Nickel‐Based Sulfide Materials for Batteries. Chemistryselect, 3(45), 12967-12986. https://doi.org/10.1002/slct.201802348
[32] Amiri, M., Pardakhti, A., Ahmadi-Zeidabadi, M., Akbari, A., & Salavati-Niasari, M. (2018). Magnetic nickel ferrite NPs: Green synthesis by Urtica and therapeutic effect of frequency magnetic field on creating cytotoxic response in neural cell lines. Colloids and Surfaces B: Biointerfaces, 172, 244-253. https://doi.org/10.1016/j.colsurfb.2018.08.049
[33] Indira, K., Shanmugam, S., Hari, A., Vasantharaj, S., Sathiyavimal, S., Brindhadevi, K., … & Pugazhendhi, A. (2021). Photocatalytic degradation of congo red dye using nickel-titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. Environmental Research, 202, 111647. https://doi.org/10.1016/j.envres.2021.111647
[34] Parveen, A., Sonkar, S., Yadav, T. P., Sarangi, P. K., Singh, A. K., Singh, S. P., & Gupta, R. (2022). Asparagus racemosus leaf extract mediated bioconversion of nickel sulfate into nickel/nickel hydroxide NPs: in vitro catalytic, antibacterial, and antioxidant activities. Biomass Conversion and Biorefinery, 1-21. https://doi.org/10.1007/s13399-022-02843-0
[35] Chaudhary, R.G., Tanna, J.A., Gandhare, N.V., Rai, A.R., Juneja. H.D., (2015) Synthesis of nickel NPs: microscopic characterization, an efficient catalyst and effective antibacterial activity. Advanced Materials Letters, 6(11) 990-998. https://doi.org/10.5185/amlett.2015.5901
[36] Chen, Y., Peng, D. L., Lin, D., & Luo, X. (2007). Preparation and magnetic properties of nickel NPs via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology, 18(50), 505703. https://doi.org/10.1088/0957-4484/18/50/505703
[37] Shamsi, J., Urban, A. S., Imran, M., De Trizio, L., & Manna, L. (2019). Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chemical reviews, 119(5), 3296-3348. https://doi.org/10.1021/acs.chemrev.8b00644
[38] Krishnia, L., Thakur, P., & Thakur, A. (2022). Synthesis of NPs by physical route. In Synthesis and Applications of NPs (pp. 45-59). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6819-7_3
[39] Witkowski, A., Stec, A. A., & Hull, T. R. (2016). Thermal decomposition of polymeric materials. SFPE handbook of Fire Protection Engineering, 167-254. https://doi.org/10.1007/978-1-4939-2565-0_7
[40] Shalichah, C., & Khumaeni, A. (2018, May). Synthesis of nickel NPs by pulse laser ablation method using Nd: YAG laser. In Journal of Physics: Conference Series (Vol. 1025, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1742-6596/1025/1/012002
[41] Lan, H., & Ding, Y. (2010). Nanoimprint lithography (pp. 457-494). Croatia: InTech. https://doi.org/10.5772/8189
[42] Ye, X., & Qi, L. (2011). Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today, 6(6), 608-631. https://doi.org/10.1016/j.nantod.2011.10.002
[43] Colson, P., Henrist, C., & Cloots, R. (2013). Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials, 2013, 21-21. https://doi.org/10.1155/2013/948510
[44] Nirupama, M. P., Bheemaraju, A., Panwar, O. S., & Satyanarayana, B. S. (2018). Nickel Nanoparticle Arrays Prepared Using Nanosphere Lithography. IJRASET, 6(II), 75-78. https://doi.org/10.22214/ijraset.2018.2013
[45] Wender, H., Migowski, P., Feil, A. F., Teixeira, S. R., & Dupont, J. (2013). Sputtering deposition of NPs onto liquid substrates: Recent advances and future trends. Coordination Chemistry Reviews, 257(17-18), 2468-2483. https://doi.org/10.1016/j.ccr.2013.01.013
[46] Yadav, T. P., Yadav, R. M., & Singh, D. P. (2012). Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2(3), 22-48. https://doi.org/10.5923/j.nn.20120203.01
[47] Ban, I., Stergar, J., Drofenik, M., Ferk, G., & Makovec, D. (2011). Synthesis of copper-nickel NPs prepared by mechanical milling for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 323(17), 2254-2258. https://doi.org/10.1016/j.jmmm.2011.04.004
[48] Chouke, P.B., Shrirame, T., Potbhare, A.K., Mondal, A., Chaudhary, A.R., Mondal, S., Thakare, S.R., Nepovimova, E., Valis, M., Kuca, K. (2022) Bioinspired metal/metal oxide NPs: A road map to potential applications, Materials Today Advances, 16, 100314. https://doi.org/10.1016/j.mtadv.2022.100314
[49] Morosanu, C. E. (2016). Thin films by chemical vapour deposition (Vol. 7). Elsevier.
[50] Ealia, S. A. M., & Saravanakumar, M. P. (2017, November). A review on the classification, characterisation, synthesis of NPs and their application. In IOP conference series: materials science and engineering (Vol. 263, No. 3, p. 032019). IOP Publishing. https://doi.org/10.1088/1757-899X/263/3/032019
[51] Shamim, A., Ahmad, Z., Mahmood, S., Ali, U., Mahmood, T., & Nizami, Z. A. (2019). Synthesis of nickel NPs by sol-gel method and their characterization. Open Journal of Chemistry, 2(1), 16-20. https://doi.org/10.30538/psrp-ojc2019.0009
[52] Ganguli, A. K., Ganguly, A., & Vaidya, S. (2010). Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews, 39(2), 474-485. https://doi.org/10.1039/B814613F
[53] Rehman, Z. U., Nawaz, M., Ullah, H., Uddin, I., Shad, S., Eldin, E., … & Javed, M. S. (2022). Synthesis and Characterization of Ni-NPs via the Microemulsion Technique and Its Applications for Energy Storage Devices. Materials, 16(1), 325. https://doi.org/10.3390/ma16010325
[54] Chime, S. A., Kenechukwu, F. C., & Attama, A. A. (2014). Nanoemulsions-advances in formulation, characterization and applications in drug delivery. Application of Nanotechnology in Drug Delivery, 3, 77-126. https://doi.org/10.5772/58673
[55] Ingale, A. G., & Chaudhari, A. N. (2013). Biogenic synthesis of NPs and potential applications: an eco-friendly approach. Journal of Nanomedicine Nanotechology, 4(165), 1-7.
[56] Mohamad, N. A. N., Arham, N. A., Jai, J., & Hadi, A. (2014). Plant extract as reducing agent in synthesis of metallic NPs: a review. Current Pharmaceutical Biotechnology, 22 (13), 1782-1793..
[57] Mondal, A., Umekar, M.S., Bhusari, G.S., Chouke, P.B., Lambat, T. Mondal, S., Chaudhary, R.G., Mahmood, S.H. (2021). Biogenic synthesis of metal/metal oxide nanostructured materials, Current Pharmaceutical Biotechnology, 22 (13), 1782-1793. https://doi.org/10.2174/1389201022666210111122911
[58] Imran Din, M., & Rani, A. (2016). Recent advances in the synthesis and stabilization of nickel and nickel oxide NPs: a green adeptness. International Journal of Analytical Chemistry, 2016. https://doi.org/10.1155/2016/3512145
[59] Mariam, A. A., Kashif, M., Arokiyaraj, S., Bououdina, M., Sankaracharyulu, M., Jayachandran, M., & Hashim, U. (2014). Bio-synthesis of NiO and Ni-NPs and their characterization. Digest Journal of Nanomaterials and Biostructures, 9(3), 1007-1019.
[60] Chen, H., Wang, J., Huang, D., Chen, X., Zhu, J., Sun, D., … & Li, Q. (2014). Plant-mediated synthesis of size-controllable Ni-NPs with alfalfa extract. Materials Letters, 122, 166-169. https://doi.org/10.1016/j.matlet.2014.02.028
[61] Mamuru, S. A., Bello, A. S., & Hamman, S. B. (2015). Annona squamosa leaf extract as an efficient bioreducing agent in the synthesis of chromium and nickel NPs. International Journal of Applied Sciences and Biotechnology, 3(2), 167-169. https://doi.org/10.3126/ijasbt.v3i2.11651
[62] Angajala, G., Ramya, R., & Subashini, R. (2014). In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel NPs phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Tropica, 135, 19-26. https://doi.org/10.1016/j.actatropica.2014.03.012
[63] Huang, Y., Zhu, C., Xie, R., & Ni, M. (2021). Green synthesis of nickel NPs using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. Journal of Experimental Nanoscience, 16(1), 368-381. https://doi.org/10.1080/17458080.2021.1975037
[64] Adams, E. Q., & Rosenstein, L. (1914). The color and ionization of crystal violet. Journal of the American Chemical Society, 36(7), 1452-1473. https://doi.org/10.1021/ja02184a014
[65] Haq, S., Dildar, S., Ali, M. B., Mezni, A., Hedfi, A., Shahzad, M. I., … & Shah, A. (2021). Antimicrobial and antioxidant properties of biosynthesized of NiO-NPs using Raphanus sativus (R. sativus) extract. Materials Research Express, 8(5), 055006. https://doi.org/10.1088/2053-1591/abfc7c
[66] Hafshejani, B. K., Mirhosseini, M., Dashtestani, F., Hakimian, F., & Haghirosadat, B. F. (2018). Antibacterial activity of nickel and nickel hydroxide NPs against multidrug resistance K. pneumonia and E. coli isolated urinary tract. Nanomedicine Journal, 5(1).
[67] Golkhatmi, F. M., Bahramian, B., & Mamarabadi, M. (2017). Application of surface-modified nano ferrite nickel in catalytic reaction (epoxidation of alkenes) and investigation on its antibacterial and antifungal activities. Materials Science and Engineering: C, 78, 1-11. https://doi.org/10.1016/j.msec.2017.04.025
[68] Kumar, N. A., Rejinold, N. S., Anjali, P., Balakrishnan, A., Biswas, R., & Jayakumar, R. (2013). Preparation of chitin nanogels containing nickel NPs. Carbohydrate polymers, 97(2), 469-474. https://doi.org/10.1016/j.carbpol.2013.05.009
[69] Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Maaza, M., Ayeshamariam, A., & Kennedy, L. J. (2016). Green synthesis of NiO-NPs using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of NPs against HT-29 cancer cells. Journal of Photochemistry and Photobiology. B, Biology, 164, 352-360. https://doi.org/10.1016/j.jphotobiol.2016.10.003
[70] Singh, A., Goyal, V., Singh, J., Kaur, H., Kumar, S., Batoo, K. M., … & Hussain, S. (2022). Structurally and morphologically engineered single-pot biogenic synthesis of NiO-NPs with enhanced photocatalytic and antimicrobial activities. Journal of Cleaner Production, 343, 131026. https://doi.org/10.1016/j.jclepro.2022.131026
[71] Berhe, M. G., & Gebreslassie, Y. T. (2023). Biomedical applications of biosynthesized nickel oxide NPs. International Journal of Nanomedicine, 4229-4251. https://doi.org/10.2147/IJN.S410668
[72] Götte, M., Berghuis, A., Matlashewski, G., Wainberg, M. A., & Sheppard, D. (Eds.). (2017). Handbook of antimicrobial resistance. New York, NY, USA: Springer. https://doi.org/10.1007/978-1-4939-0694-9
[73] Iqbal, J., Abbasi, B. A., Mahmood, T., Hameed, S., Munir, A., & Kanwal, S. (2019). Green synthesis and characterizations of Nickel oxide NPs using leaf extract of Rhamnus virgata and their potential biological applications. Applied Organometallic Chemistry, 33(8), e4950. https://doi.org/10.1002/aoc.4950
[74] Haritha, V., Gowri, S., Janarthanan, B., Faiyazuddin, M., Karthikeyan, C., & Sharmila, S. (2022). Biogenic synthesis of Nickel Oxide NPs using Averrhoa bilimbi and Investigation of its Antibacterial, Antidiabetic and Cytotoxic properties. Inorganic Chemistry Communications, 144, 109930. https://doi.org/10.1016/j.inoche.2022.109930
[75] Abbasi, B. A., Iqbal, J., Mahmood, T., Ahmad, R., Kanwal, S., & Afridi, S. (2019). Plant-mediated synthesis of nickel oxide NPs (NiO) via Geranium wallichianum: Characterization and different biological applications. Materials Research Express, 6(8), 0850a7. https://doi.org/10.1088/2053-1591/ab23e1
[76] Karthik, K., Shashank, M., Revathi, V., & Tatarchuk, T. (2019). Facile microwave-assisted green synthesis of NiO-NPs from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Molecular Crystals and Liquid Crystals. https://doi.org/10.1080/15421406.2019.1578495
[77] Chaudhary, R.G., Bhusari, G.S., Tiple, A.D., Rai, A.R., Somkuvar, S.R., Potbhare, A.K., Lambat, T.L., Ingle, P.P., Abdala, A.A. (2019). Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Current Pharmaceutical Design, 25(37), 4013-4029. https://doi.org/10.2174/1381612825666191111091326
[78] Lu, Y., Han, M., Shahri, E. E., Abbaspour, S., & Tayebee, R. (2023). Delivery of anti-cancer and anti-depression doxepin drug by nickel oxide NPs originated from the Cressa nudicaulis plant extract. RSC Advances, 13(18), 12133-12140. https://doi.org/10.1039/D2RA07545H
[79] Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., & Darroudi, M. (2021). Green-based bio-synthesis of nickel oxide NPs in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chemistry Letters and Reviews, 14(2), 404-414. https://doi.org/10.1080/17518253.2021.1923824
[80] Ghazal, S., Akbari, A., Hosseini, H. A., Sabouri, Z., Forouzanfar, F., Khatami, M., & Darroudi, M. (2020). Sol-gel biosynthesis of nickel oxide NPs using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. Journal of Molecular Structure, 1217, 128378. https://doi.org/10.1016/j.molstruc.2020.128378
[81] Pandian, C. J., Palanivel, R., & Dhananasekaran, S. (2015). Green synthesis of nickel NPs using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese Journal of Chemical Engineering, 23(8), 1307-1315. https://doi.org/10.1016/j.cjche.2015.05.012
[82] Ravindhranath, K., & Ramamoorty, M. (2017). Nickel based nano particles as adsorbents in water purification methods-a review. Oriental Journal of Chemistry, 33(4), 1603. https://doi.org/10.13005/ojc/330403
[83] Arsène, M. M. J., Davares, A. K. L., Viktorovna, P. I., Andreevna, S. L., Sarra, S., Khelifi, I., & Sergueïevna, D. M. (2022). The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Veterinary World, 15(3), 662. https://doi.org/10.14202/vetworld.2022.662-671
[84] Pandit, S., Dasgupta, D., Dewan, N., & Prince, A. (2016). Nanotechnology-based biosensor and its application. The Pharma Innovation, 5(6, Part A), 18.
[85] Salihu, S., Yusof, N. A., Mohammad, F., Abdullah, J., & Al-Lohedan, H. A. (2019). Nickel nanoparticle-modified electrode for the electrochemical sensory detection of penicillin G in bovine milk samples. Journal of Nanomaterials, 2019, 1-11. https://doi.org/10.1155/2019/1784154
[86] Chen, X., Liu, Q., Bai, T., Wang, W., He, F., & Ye, M. (2021). Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chemical Engineering Journal, 409, 127237. https://doi.org/10.1016/j.cej.2020.127237
[87] Aso, K., Hirokazu, H., Akitoshi, T., & Tatsumisago, M. (2011). Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. Journal of Materials Chemistry, 21(9), 2987 -2990. doi:10.1039/c0jm02639e
[88] Liang, G., He, L., Cheng, H., Li, W., Li, X., Zhang, C., … & Zhao, F. (2014). The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 309, 468-476. https://doi.org/10.1016/j.jcat.2013.10.022
[89] Du, Y., & Chen, R. (2007). Effect of Nickel Particle Size on Alumina Supported Nickel Catalysts for p-Nitrophenol Hydrogenation. Chemical and Biochemical Engineering Quarterly, 21(3), 251-255.
[90] Orlandi, M., Brenna, D., Harms, R., Jost, S., & Benaglia, M. (2016). Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Organic Process Research & Development, 22(4), 430-445. https://doi.org/10.1021/acs.oprd.6b00205
[91] Alonso, F., Riente, P., & Yus, M. (2011). Nickel NPs in hydrogen transfer reactions. Accounts of Chemical Research, 44(5), 379-391. https://doi.org/10.1021/ar1001582