Bioinspired fabrication of copper nanoparticles and their potential applications
Minakshi Y. Deshmukh, Sudip Mondal, Rohit S. Madankar, Trimurty Lambat, Ratiram G. Chaudhary, Anirudh Mondal
A new era of materials with a wide range of uses in pharmacology, agriculture, and medicine has been brought about by the development of metallic nanoparticles (NPs). Nanoparticles with remarkable qualities are created using physical, chemical, and biological processes. The common element copper is essential to an organism’s ability to operate normally. As compared to traditional antibiotics, Copper NPs have better antibacterial potential. Copper NPs are also known for better antiviral, antifungal, and anticancer effects. Moreover, bioinspired Copper NPs exhibit potential capacity against bacterial strains that are resistant to many drugs, even though the precise mechanisms of action are yet unclear. With this interest, the present chapter focuses on effects, modes of action and potential toxicity of bioinspired copper NPs.
Keywords
Bioinspired Copper NPs, Biogenic Synthesis, Antimicrobial Assay, Toxicity
Published online 10/20/2024, 26 pages
Citation: Minakshi Y. Deshmukh, Sudip Mondal, Rohit S. Madankar, Trimurty Lambat, Ratiram G. Chaudhary, Anirudh Mondal, Bioinspired fabrication of copper nanoparticles and their potential applications, Materials Research Foundations, Vol. 169, pp 113-138, 2024
DOI: https://doi.org/10.21741/9781644903261-5
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett. 2014;9:229. https://doi.org/10.1186/1556-276X-9-229
[2] Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:14. https://doi.org/10.1186/s12951-018-0334-5
[3] Husen A. Introduction and techniques in nanomaterials formulation: An overview. In: Husen A, Jawaid M, editors. Nanomaterials for Agriculture andForestry Applications. Cambridge: Elsevier Inc; 2020. p. 1-14. https://doi.org/10.1016/B978-0-12-817852-2.00001-9
[4] Siddiqi KS, Husen A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett. 2016;11:363. https://doi.org/10.1186/s11671-016-1580-9
[5] Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett. 2016;11:98. https://doi.org/10.1186/s11671-016-1311-2
[6] Philip D, Unni C, Aromal SA, Vidhu VK. Murrayakoenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochem Acta A Mol BiomolSpectrosc. 2011;78:899-904. https://doi.org/10.1016/j.saa.2010.12.060
[7] Chouke, P.B., Potbhare, A.K., Dadure, K.M., Mungole, A.J., Meshram, N.P., Chaudhary, R.R., Rai, A.R., Chaudhary, R.G., An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay, Mater. Today Proc., 2020, 29, 815-821. https://doi.org/10.1016/j.matpr.2020.04.758
[8] Nagar N, Jain S, Kachhawah P, Devra V. Synthesis and characterization ofsilver nanoparticles via green route. Korean J Chem Eng. 2016;33:2990-7. https://doi.org/10.1007/s11814-016-0156-9
[9] Husen A. Gold nanoparticles from plant system: synthesis, characterizationand their application. In: Ghorbanpour M, Manika K, Varma A, editors. Nanoscience and Plant-Soil Systems. Soil Biology. Cham: Springer, 2017;48: 455-479. https://doi.org/10.1007/978-3-319-46835-8_17
[10] Chouke, P.B., Potbhare, A.K., Meshram, N.P., Rai, M.M., Dadure, K.M., Chaudhary, K., Rai, A.R., Desimone, M.F., Chaudhary, R.G., Masram, D.T., Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism, ACS Omega, 2022,7, 6869−6884. https://doi.org/10.1021/acsomega.1c06544
[11] Siddiqi KS, Rashid M, Rahman A, Tajuddin HA, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueousethanolic extract of lichen (Usnea longissima) and their antimicrobial activity.Biomat Res. 2018;22:23. https://doi.org/10.1186/s40824-018-0135-9
[12] Mondal, A., Umekar, M.S., Bhusari, G.S., Chouke, P.B., Lambat, T., Mondal, S., Chaudhary, R.G. and Mahmood, S.H., Biogenic synthesis of metal/metal oxide nanostructured materials. Curr. Pharm. Biotech. 2021, 22, 1782-1793. https://doi.org/10.2174/1389201022666210111122911
[13] Umer A, Naveed S, Ramzan N, Rafiqui MS. Selection of a suitable method for the synthesis of copper nanoparticles. Nano. 2012;7:1230005. https://doi.org/10.1142/S1793292012300058
[14] Jain S, Jain A, Kachhawah P, Devra V. Synthesis and size control of copper nanoparticles and their catalytic application. Trans Nonferrous Met SocChina. 2015;25:3995-4000. https://doi.org/10.1016/S1003-6326(15)64048-1
[15] K. Tharani, L. Nehru, Synthesis and chareterization of copper oxide nanoparticles by solution combustion method: photocatalytic activity under visible light irradiation, Rom. J. Biophys. 30 (2) (2020).
[16] Potbhare, A.K., Chaudhary, R.G., Chouke, P.B., Yerpude, S., Mondal, A., Sonkusare, V.N., Rai, A.R., Juneja, H.D., Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C., 2019, 99, 783-793. https://doi.org/10.1016/j.msec.2019.02.010
[17] Tiwari M, Jain P, Hariharapura RC, Narayanan K, Udaya BK, Udupa N, Rao JV. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus,a soil isolate. Process Biochem. 2016;51:1348-56. https://doi.org/10.1016/j.procbio.2016.08.008
[18] Borkow G, Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Cur Chem Biol. 2009;3:272-8. https://doi.org/10.2174/2212796810903030272
[19] Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y. Observationof charge stripes in cupric oxide. Phys Rev Lett. 2000;85:5170-3. https://doi.org/10.1103/PhysRevLett.85.5170
[20] Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, AllakerRP.Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agent. 2009;33:587-90. https://doi.org/10.1016/j.ijantimicag.2008.12.004
[21] Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesisand stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity,and antioxidant activities. Nano Res Lett. 2017;12:638. https://doi.org/10.1186/s11671-017-2399-8
[22] Apostolov AT, Apostolova IN, Wesselinowa JM. Dielectric constant of multiferroic pure and doped CuO nanoparticles. Solid State Commun. 2014;192:71-4. https://doi.org/10.1016/j.ssc.2014.05.014
[23] Thiruvengadam M, Chung IM, Gomathi T, Ansari MA, Khanna VG, Babu V, Rajakumar G. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst Eng. 2019;42: 1769-77. https://doi.org/10.1007/s00449-019-02173-y
[24] Pariona N, Mtz-Enriquez AI, Sanchez-Rangel D, Carrion G, Paraguay-DelgadoF, Rosas-Saito G. Green-synthesized copper nanoparticles as a potentialantifungal against plant pathogens. RSC Adv. 2019;9:18835-43. https://doi.org/10.1039/C9RA03110C
[25] Lee Y, Choi JR, Lee KJ, Stott NE, Kim D. Large-scale synthesis of coppernanoparticles by chemically controlled reduction for applications of inkjetprinted electronics. Nanotechnology. 2008;19:598-604. https://doi.org/10.1088/0957-4484/19/41/415604
[26] Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex coppernanostructures and their applications. Biotechnol Lett. 2013;35:1365-75. https://doi.org/10.1007/s10529-013-1239-x
[27] Waser O, Hess M, Güntner A, Novák P, Pratsinis SE. Size controlled CuO nanoparticles for Li-ion batteries. J Power Sour. 2013;241:415-22. https://doi.org/10.1016/j.jpowsour.2013.04.147
[28] Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G. Green synthesis ofCuO nanoparticles with leaf extract of Calotropis gigantea and its dyesensitized solar cells applications. J All Comp. 2015;632:321-5. https://doi.org/10.1016/j.jallcom.2015.01.172
[29] Kir I, Mohammed HA, Laouini SE, Souhaila M, Hasan GG, Abdullah JA, Mokni S, Naseef A, Alsalme A, Barhoum A. Plant extract-mediated synthesis of CuO nanoparticles from lemon peel extract and their modification with polyethylene glycol for enhancing photocatalytic and antioxidant activities. Journal of Polymers and the Environment. 2024 Feb;32(2):718-34. https://doi.org/10.1007/s10924-023-02976-x
[30] Joshi A, Sharma A, Bachheti RK, Husen A, Mishra VK. Plant-mediated synthesis of copper oxide nanoparticles and their biological applications. In:Husen A, Iqbal M, editors. Nanomaterials and Plant Potential. Cham: Springer International Publishing AG; 2019. p. 221-37. https://doi.org/10.1007/978-3-030-05569-1_8
[31] Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnoliakobus leaf extract and their antibacterial activity. J Chem TechnolBiotechnol. 2013;88:1971-7. https://doi.org/10.1002/jctb.4052
[32] Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles usingMagnoliakobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44:1133-8. https://doi.org/10.1016/j.procbio.2009.06.005
[33] Kulkarni V, Suryawanshi S, Kulkarni P. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Curr Sci. 2015;109:255-27.
[34] Nagar N, Devra V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mat Chem Phys. 2018;213: 44-51. https://doi.org/10.1016/j.matchemphys.2018.04.007
[35] Brumbaugh AD, Cohen KA, Angelo SKS. Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustain Chem Eng. 2014;2:1933-9. https://doi.org/10.1021/sc500393t
[36] Umekar, M., Chaudhary, R., Bhusari, G., Potbhare, A., Fabrication of zinc oxide- decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum, Emerg. Mater. Res., 2021, 10, 75-84. https://doi.org/10.1680/jemmr.19.00175
[37] Chouke, P.B Chouke, P.B., Bhusari, G. S., Somkuwar, S., Shaik, PMD., Mishra, R. K., Chaudhary, R.G., Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity, Adv. Mater. Lett., 2019, 10, 355-360. https://doi.org/10.5185/amlett.2019.2235
[38] Prabu P, Losetty V. Green synthesis of copper oxide nanoparticles using Macroptilium Lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. Journal of Molecular Structure. 2024 Apr 5;1301:137404. https://doi.org/10.1016/j.molstruc.2023.137404
[39] Sonkusare, V.N., Chaudhary, R.G., Bhusari, G.S., Mondal, A., Potbhare, A.K., Mishra, R.K., Juneja, H.D., Abdala, A.A., Mesoporous octahedron-shaped tricobalt tetraoxide nanoparticles for photocatalytic degradation of toxic dyes, ACS Omega, 2020, 5, 7823-7835. https://doi.org/10.1021/acsomega.9b03998
[40] Nouren S, Bibi I, Kausar A, Sultan M, Bhatti HN, Safa Y, Sadaf S, Alwadai N, Iqbal M. Green synthesis of CuO nanoparticles using Jasmin sambac extract: Conditions optimization and photocatalytic degradation of Methylene Blue dye. Journal of King Saud University-Science. 2024 Mar 1;36(3):103089. https://doi.org/10.1016/j.jksus.2024.103089
[41] Halfadji A, Naous M, Rajendrachari S, Ceylan Y, Ceylan KB, Shekar PR. Effective investigation of electro-catalytic, photocatalytic, and antimicrobial properties of porous CuO nanoparticles green synthesized using leaves of Cupressocyparis leylandii. Journal of Molecular Structure. 2024 Apr 5;1301:137318. https://doi.org/10.1016/j.molstruc.2023.137318
[42] Ahmad A, Khan M, Osman SM, Haassan AM, Javed MH, Ahmad A, Rauf A, Luque R. Benign-by-design plant extract-mediated preparation of copper oxide nanoparticles for environmentally related applications. Environmental Research. 2024 Apr 15;247:118048. https://doi.org/10.1016/j.envres.2023.118048
[43] Relhan A, Guleria S, Bhasin A, Mirza A, Zhou JL. Biosynthesized copper oxide nanoparticles by Psidium guajava plants with antibacterial, antidiabetic, antioxidant, and photocatalytic capacity. Biomass Conversion and Biorefinery. 2024 Apr 12:1-8. https://doi.org/10.1007/s13399-024-05544-y
[44] Vinothkanna A, Mathivanan K, Ananth S, Ma Y, Sekar S. Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities. Environmental Science and Pollution Research. 2023 Mar;30(15):42563-74. https://doi.org/10.1007/s11356-022-18996-4
[45] Wang Y, Biradar AV, Wang G, Sharma KK, Duncan CT, Rangan S, Asefa T.Controlled synthesis of water-dispersible faceted crystalline coppernanoparticles and their catalytic properties. Chemistry. 2010;16:10735-43. https://doi.org/10.1002/chem.201000354
[46] Demirskyi D, Agrawal D, Ragulya A. Neck formation between copperspherical particles under single-mode and multimode microwave sintering.Mat Sci Eng: A. 2010;A527:2142-5. https://doi.org/10.1016/j.msea.2009.12.032
[47] Swarnkar RK, Singh SC, Gopal R. Effect of aging on copper nanoparticlessynthesized by pulsed laser ablation in water: structural and opticalcharacterizations. Bull Mater Sci. 2011;34:1363-9. https://doi.org/10.1007/s12034-011-0329-4
[48] Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticlesby Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World JMicrobiolBiotechnol. 2015;31:865-73. https://doi.org/10.1007/s11274-015-1840-3
[49] Sastry ABS, Aamanchi RBK, Rama Linga Prasad CS, Murty BS. Large-scalegreen synthesis of cu nanoparticles. Environ Chem Lett. 2013;11:183-7. https://doi.org/10.1007/s10311-012-0395-x
[50] Hirai H, Wakabayashi H, Komiyama M. Preparation of polymer-protectedcolloidal dispersions of copper. Bull Chem Soc Japan. 1986;59:367-72. https://doi.org/10.1246/bcsj.59.367
[51] Zhu YJ, Qian YT, Zhang MW, Chen ZY, Xu DF. Preparation andcharacterization of nanocrystalline powders of cuprous oxide by using Cradiation. Mater Res Bull. 1994;29:377-83. https://doi.org/10.1016/0025-5408(94)90070-1
[52] Nasrollahzadeh M, Sajadi SM, Khalaj M. Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L andtheir catalytic activity for ligand-free Ullmanncoupling reaction and reduction of 4-nitrophenol. RSC Adv. 2014;4:47313-8. https://doi.org/10.1039/C4RA08863H
[53] Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9:33-8. https://doi.org/10.1080/17518253.2016.1141238
[54] Hashemi pour H, Zadeh ME, Pourakbari R, Rahimi P. Investigation on synthesis and size control of copper nanoparticle via electrochemical andchemical reduction method. Int J Phys Sci. 2011;6:4331-6.
[55] Ashfaq M, Verma N, Khan S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of cu nanoparticles.Environ Sci: Nano. 2017;4:138-48. https://doi.org/10.1039/C6EN00385K
[56] Padil VVT, Černík M. Green synthesis of copper oxide nanoparticles usinggum karaya as a biotemplate and their antibacterial application. Int JNanomedicine. 2013;8:889-98. https://doi.org/10.2147/IJN.S40599
[57] Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidantand antibacterial behavior of CuO nanoparticles. Coll Surf B Biointerf. 2013;101:430-3. https://doi.org/10.1016/j.colsurfb.2012.07.002
[58] Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, IhssaneB.Biosynthesis, characterization and antimicrobial activity of copper oxidenanoparticles (CONPs) produced using brown alga extract (Bifurcariabifurcata). Appl Nanosci. 2014;4:571-6. https://doi.org/10.1007/s13204-013-0233-x
[59] Krithiga N, Jayachitra A, Rajalakshmi A. Synthesis, characterization andanalysis of the effect of copper oxide nanoparticles in biological systems.Ind J Nano Sci. 2013;1:6-15.
[60] Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2Oquantum particles. J Appl Phys. 2002;92:1292-7. https://doi.org/10.1063/1.1491020
[61] Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S. Copper oxidenanocrystals. J Am Chem Soc. 2005;127:9506-11. https://doi.org/10.1021/ja050006u
[62] Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H. Synthesis ofcopper oxide nanoparticles by using Phormidium cyanobacterium. Indo JChem. 2009;9:355-60. https://doi.org/10.22146/ijc.21498
[63] Kiruba Daniel SCG, Nehru K, Sivakumar M. Rapid biosynthesis of silvernanoparticles using Eichornia crassipes and its antibacterial activity. CurrNanosci. 2012;8:1-5. https://doi.org/10.2174/1573413711208010125
[64] Vijay Kumar PPN, Shameem U, Kollu P, Kalyani RL, Pammi SVN. Greensynthesis of copper oxide nanoparticles using Aloe vera leaf extract and itsantibacterial activity against fish bacterial pathogens. BioNanoSci. 2015;5:135-9. https://doi.org/10.1007/s12668-015-0171-z
[65] Vishveshvar K, Aravind Krishnan MV, Haribabu K, Vishnuprasad S. Greensynthesis of copper oxide nanoparticles using Ixiro coccinea plant leavesand its characterization. BioNanoSci. 2018;8:554-8. https://doi.org/10.1007/s12668-018-0508-5
[66] Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Kavitha G,Shanmugavel M, Manikandan E, Pugazhendhi A. Synthesis of ecofriendlycopper oxide nanoparticles for fabrication over textile fabrics:characterization of antibacterial activity and dye degradation potential. JPhotochemPhotobiol B Biol. 2018;191:149. https://doi.org/10.1016/j.jphotobiol.2018.12.026
[67] Chouke, P.B., Dadure, K.M., Potbhare, A.K., Bhusari, G.S., Mondal, A., Chaudhary, K., Singh, V., Desimone, M.F., Chaudhary, R.G. and Masram, D.T., Biosynthesized δ-Bi2O3 nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking, ACS Omega, 2022,7, 20983-20993. https://doi.org/10.1021/acsomega.2c01745
[68] Vanathi P, Rajiv P, Sivaraj R. Synthesis and characterization of Eichhorniamediated copper oxide nanoparticles and assessing their antifungal activityagainst plant pathogens. Bull Mater Sci. 2016;39:1165-70. https://doi.org/10.1007/s12034-016-1276-x
[69] SAziz, S.T., Ummekar, M., Karajagi, I., Riyajuddin, S.K., Siddhartha, K.V.R., Saini, A., Potbhare, A., Chaudhary, R.G., Vishal, V., Ghosh, P.C. and Dutta, A., A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting, Cell. Rep. Phys. Sci., 2022, 3(11) 101106. https://doi.org/10.1016/j.xcrp.2022.101106
[70] Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R. Biogenic copperoxide nanoparticles synthesis using Tabernaemontana divaricate leaf extractand its antibacterial activity against urinary tract pathogen. SpectrochimActa A Mol BiomolSpectrosc. 2014;133:178-81. https://doi.org/10.1016/j.saa.2014.05.048
[71] Potbhare, A. K., Chouke, P. B., Mondal, A., Thakare, R. U., Mondal, S., Chaudhary, R. G., Rai, A. R., Rhizoctonia solani assisted biosynthesis of silver nanoparticles for antibacterial assay. Mater. Today Proc., 2020, 29, 939-945. https://doi.org/10.1016/j.matpr.2020.05.419
[72] Gopinath V, Priyadarshini S, Al-Maleki AR, Alagiri M, Yahya R, Saravanan S,Vadivelu J. In vitro toxicity, apoptosis and antimicrobial effects of phytomediated copper oxide nanoparticles. RSC Adv. 2016;6:110986-95. https://doi.org/10.1039/C6RA13871C
[73] Saif S, Tahir A, Asim T, Chen Y. Plant mediated green synthesis of CuOnanoparticles: comparison of toxicity of engineered and plant mediatedCuO nanoparticles towards Daphnia magna. Nanomaterials. 2016;6:205. https://doi.org/10.3390/nano6110205
[74] Odzak N, Kistler D, Behra R, Sigg L. Dissolution of metal and metal oxidenanoparticles in aqueous media. Environ Pollut. 2014;191:132-8. https://doi.org/10.1016/j.envpol.2014.04.010
[75] Adam N, Leroux F, Knapen D, Bals S, Blust R. The uptake of ZnO and CuOnanoparticles in the water-flea Daphnia magna under acute exposurescenarios. Environ Pollut. 2014;194:130-7. https://doi.org/10.1016/j.envpol.2014.06.037
[76] Regier N, Cosio C, von Moos N, Slaveykova VI. Effects of copper-oxidenanoparticles, dissolved copper and ultraviolet radiation on copperbioaccumulation, photosynthesis and oxidative stress in the aquaticmacrophyte Elodea nuttallii. Chemosphere. 2015;128:56-61. https://doi.org/10.1016/j.chemosphere.2014.12.078
[77] Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R. Polymercoating of copper oxide nanoparticles increases nanoparticles uptake andtoxicity in the green alga Chlamydomonas reinhardtii. Chemosphere. 2012;87:1388-94. https://doi.org/10.1016/j.chemosphere.2012.02.046
[78] Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds (Landoltiapunctata), nanoparticulate copper oxide is more inhibitory than the solublecopper in the bulk solution. Environ Pollut. 2011;159:1277-82. https://doi.org/10.1016/j.envpol.2011.01.028
[79] Raja Naika H, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D,Nagabhushana H. Green synthesis of CuO nanoparticles using Gloriosa superbaL. extract and their antibacterial activity. J Taibah Univ Sci. 2015;9:7-12. https://doi.org/10.1016/j.jtusci.2014.04.006
[80] Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS,Ravikumar V. Green synthesis of colloidal copper oxide nanoparticles usingCarica papaya and its application in photocatalytic dye degradation.Spectrochim Acta A Mol BiomolSpectrosc. 2014;121:746-50. https://doi.org/10.1016/j.saa.2013.12.020
[81] Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by asimplewetchemical method. Nano Res Lett. 2012;7:70. https://doi.org/10.1186/1556-276X-7-70
[82] Nasrollahzadeh M, Maham M, Sajadi SM. Green synthesis of CuOnanoparticles by aqueous extract of Gundeliatournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureasandreduction of 4-nitrophenol. J Colloid Interface Sci. 2015; 455:245-53. https://doi.org/10.1016/j.jcis.2015.05.045
[83] Adzet T, Puigmacia M. High-performance liquid chromatography ofcaffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatograph A. 1985; 348:447-53. https://doi.org/10.1016/S0021-9673(01)92486-0
[84] Haghi G, Hatami A, Arshi R. Distribution of caffeic acid derivatives inGundeliatournefortii L. Food Chem. 2011;124:1029-35. https://doi.org/10.1016/j.foodchem.2010.07.069
[85] Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A. Greensynthesis of CuO nanoparticles by aqueous extract of Anthemis nobilisflowers and their catalytic activity for the A3 coupling reaction. J Colloid Interface Sci. 2015; 459:183-8. https://doi.org/10.1016/j.jcis.2015.08.020
[86] Ullah H, Ullah Z, Fazal A, Irfan M. Use of vegetable waste extracts forcontrolling microstructure of CuO nanoparticles: green synthesis,characterization, and photocatalytic applications. J Chem. 2017; 2721798:5. https://doi.org/10.1155/2017/2721798
[87] Umekar, M. S., Bhusari, G.S., Potbhare, A.K., Mondal, A., Kapgate, B.P., Desimone, M.F. and Chaudhary, R.G., Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotech. 2021, 22, 1759-1781. https://doi.org/10.2174/1389201022666201231115826
[88] Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M. Greensynthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract andtheir catalytic performance for the reduction of 4-nitrophenol andphosphine-free heck coupling reaction under aerobic conditions. J ColloidInterface Sci. 2015;448:106-13. https://doi.org/10.1016/j.jcis.2015.02.009
[89] Geil P, Anderson J. Nutrition and health implications of dry beans: a review.J Am Coll Nutr. 1994;13:549-58. https://doi.org/10.1080/07315724.1994.10718446
[90] Potbhare, A.K., Tarik Aziz, S.K., Ayyub, M.M., Kahate, A., Madankar, R., Wankar, S., Dutta A., Abdala A.A., Sami H.M., Adhikari, R., Chaudhury, R.G., Bioinspired Graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review, Nanoscale Adv., 2024, DOI: 10.1039/D3NA01071F. https://doi.org/10.1039/D3NA01071F
[91] Bachheti A, Sharma A, Bachheti RK, Husen A, Pandey DP. Plantallelochemicals and their various application. In: Mérillon JM, RamawatKG,editors. Co-Evolution of Secondary Metabolites, Reference Series inPhytochemistry. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-76887-8_14-1 (2019). https://doi.org/10.1007/978-3-319-76887-8_14-1
[92] Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J. Greensynthesis: in-vitro anticancer activity of copper oxide nanoparticles againsthuman cervical carcinoma cells. Arab J Chem. 2017;10:215-25. https://doi.org/10.1016/j.arabjc.2016.01.011
[93] Bawadi HA. Inhibition of Caco-2 colon, MCF-7, and Hs578T breast, and DU145 prostatic cancer cell proliferation by water soluble black bean condensed tannins. Can Lett. 2005;218:153-62. https://doi.org/10.1016/j.canlet.2004.06.021
[94] Bobe G, Barret KG, Mentor-Marcel RA, Saffiotti U, Young MR, Colburn Chaudhary, R.G., Bhusari, G.S., Tiple, A.D., Rai, A.R., Somkuvar, S.R., Potbhare, A.K., Lambat, T.L., Ingle, P.P., Abdala, A.A., Metal/metal oxide nanoparticles: toxicity, applications, and prospects, Curr. Pharm. Des., 2019, 25, 4013-4029. https://doi.org/10.2174/1381612825666191111091326
[95] Hangen L, Bennik MR. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats.Nutr Cancer. 2002;44:60-5. https://doi.org/10.1207/S15327914NC441_8
[96] Thompson MD, Mensack MM, Jiang W, Zhu Z, Lewis MR, McGinley JN, BrickMA, Thompson HJ. Cell signaling pathways associated with a reduction inmammary cancer burden by dietary common bean (Phaseolus vulgaris L.).Carcinogenesis. 2012;33:226-32. https://doi.org/10.1093/carcin/bgr247
[97] Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization ofcopper nanoparticles stabilized with Quisqualis indica extract: evaluation ofits cytotoxicity and apoptosis in B16F10 melanoma cells. BiomedPharmacother. 2018;97:1373-85. https://doi.org/10.1016/j.biopha.2017.10.167
[98] Khani R, Roostaei B, Bagherzade G, Moudi M. Green synthesis of coppernanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: applicationfor adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq.2018;255:541-9. https://doi.org/10.1016/j.molliq.2018.02.010
[99] Machado TDB, Leal ICR, Amaral ACF, Dos Santos KRN, Da Silva MG, KusterRM. Antimicrobial Ellagitannin of Punica granatum Fruits. J Braz Chem Soc.2002;13:606-10. https://doi.org/10.1590/S0103-50532002000500010
[100] Voravuthikunchai SP, Sririrak T, Limsuwan S, Supawita T, Iida T, Honda T.Inhibitory effects of active compounds from Punica granatum pericarp onVerocytotoxin production by Enterohemorrhagic Escherichia coli O157: H7. JHealth Sci. 2005;51:590-6. https://doi.org/10.1248/jhs.51.590
[101] Yerpude, S.T., Potbhare, A.K., Bhilkar, P., Rai, A.R., Singh, R.P., Abdala, A.A., Adhikari, R., Sharma, R., Chaudhary, R.G., Biomedical and clinical applications of platinum- based nanohybrids: An update review, Environ. Res., 2023, 231, 116148. https://doi.org/10.1016/j.envres.2023.116148
[102] Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependentantimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine. 2012;7:3527-35. https://doi.org/10.2147/IJN.S29020
[103] Nasrollahzadeh M, Maham M, Rostami-Vartooni A, Bagherzadeh M,Sajadi SM. Barberry fruit extract assisted in situ green synthesis of cunanoparticles supported on a reduced graphene oxide-Fe3O4nanocomposite as a magnetically separable and reusable catalyst forthe O-arylation of phenols with aryl halides under ligand-freeconditions. RSC Adv. 2015;5:64769-80. https://doi.org/10.1039/C5RA10037B
[104] Umekar, M.S., Chaudhary, R.G., Bhusari, G.S., Mondal, A., Potbhare, A.K., Sami, M., Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract, Mater. Today Proc., 2020, 29, 709-714. https://doi.org/10.1016/j.matpr.2020.04.169
[105] Embiale A, Hussein M, Husen A, Sahile S, Mohammed K. Differentialsensitivity of Pisum sativum L. cultivars to water-deficit stress: changes ingrowth, water status, chlorophyll fluorescence and gas exchange attributes.J Agron. 2016;15:45-57. https://doi.org/10.3923/ja.2016.45.57
[106] Siddiqi KS, Husen A. Engineered gold nanoparticles and plant adaptationpotential. Nano Res Lett. 2016;11:400. https://doi.org/10.1186/s11671-016-1607-2
[107] Siddiqi KS, Husen A. Plant response to engineered metal oxidenanoparticles. Nano Res Lett. 2017;12:92. https://doi.org/10.1186/s11671-017-1861-y
[108] Chaudhary, R.G., Potbhare, A.K., Chouke, P.B., Rai, A.R., Mishra, R.K., Desimone, M.F., Abdala, A.A. Graphene-based materials and their nanocomposites with metal oxides: biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Magnetic Oxides and Composites II, MRF , 2020, 83, 79-116. https://doi.org/10.21741/9781644900970-4
[109] Husen A, Iqbal M, Sohrab SS, Ansari MKA. Salicylic acid alleviates salinitycaused damage to foliar functions, plant growth and antioxidant system inEthiopian mustard (Brassica carinata A. Br.). Agri Food Sec. 2018;7:44. https://doi.org/10.1186/s40066-018-0194-0
[110] Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G. Modulationof salt-stress tolerance of Niger (Guizotiaabyssinica), an oilseed plant, byapplication of salicylic acid. J Environ Biol. 2019;40:94-104. https://doi.org/10.22438/jeb/40/1/MRN-808
[111] Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP,Boyanov MI, Anderson AJ. CuO and ZnO nanoparticles: phtotoxicity, metalspeciation, and induction of oxidative stress in sand-grown wheat. JNanopart Res. 2012;14:1125-9. https://doi.org/10.1007/s11051-012-1125-9
[112] Chaudhary, R.G., Potbhare, A.K., Aziz, S.T., Umekar, M.S., Bhuyar, S.S., Mondal, A., Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Mater. Today Proc., 36 (2021) 756-762. https://doi.org/10.1016/j.matpr.2020.05.821
[113] Yasmeen F, Raja NI, Razzaq A, Komatsu S. Proteomic and physiologicalanalyses of wheat seeds exposed to copper and iron nanoparticles. BiochimBiophys Acta. 1865;2017:28-42. https://doi.org/10.1016/j.bbapap.2016.10.001
[114] Ashfaq M, Singh S, Sharma A, Verma N. Cytotoxic evaluation of thehierarchical web of carbon micronanofibers. Ind Eng Chem Res. 2013;52:4672-82. https://doi.org/10.1021/ie303273s
[115] Nair PMG, Chung IM. Impact of copper oxide nanoparticles exposure onArabidopsis thaliana growth, root system development, root lignificaion, andmolecular level changes. Environ Sci Pollut Res. 2014;21:12709-22. https://doi.org/10.1007/s11356-014-3210-3
[116] Lequeux H, Hermans C, Lutts S, Nathalie V. Response to copper excess inArabidopsis thaliana: impact on the root system architecture, hormonedistribution, lignin accumulation and mineral profile. Plant Physiol Biochem.2010;48:673-82. https://doi.org/10.1016/j.plaphy.2010.05.005
[117] Potbhare, A.K., Bhilkar, P.R., Yerpude, S.T., Madankar, R.S., Shingda, S.R., Rameshwar Adhikari, R., Chaudhary, R.G., Applications of Emerging Nanomaterials and Nanotechnology, Applications of Emerging Nanomaterials and Nanotechnology, MRF, 2023, 148, 304-333. https://doi.org/10.21741/9781644902554-11
[118] Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M. Effect of copperoxide nanoparticles on the physiology, bioactive molecules, andtranscriptional changes in Brassica rapa ssp. rapa seedlings. Water Air SoilPollut. 2019;230:48. https://doi.org/10.1007/s11270-019-4084-2
[119] Chouke, P.B., Shrirame, T., Potbhare, A.K., Mondal, A., Chaudhary, A.R., Mondal, S., Thakare, S.R., Nepovimova, E., Valis, M., Kuca, K., Sharma, R., Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Mater. Today Adv. 2022, 16, 100314. https://doi.org/10.1016/j.mtadv.2022.100314
[120] Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity ofnanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeriandcrustaceans Daphnia magna and Thamnocephalusplatyurus. Chemosphere.2008;71:1308-16. https://doi.org/10.1016/j.chemosphere.2007.11.047
[121] Tavares KP, Caloto-Oliveira Á, Vicentini DS, Melegari SP, Matias WG, BarbosaS, Kummrow F. Acute toxicity of copper and chromium oxide nanoparticlesto Daphnia similis. Ecotoxicol Environ Contam. 2014; 9:43-50. https://doi.org/10.5132/eec.2014.01.006
[122] Adam N, Vakurov A, Knapen D, Blust R. The chronic toxicity of CuOnanoparticles and copper salt to Daphnia magna. J Hazard Mater. 2015; 283:416-22. https://doi.org/10.1016/j.jhazmat.2014.09.037
[123] Chaudhary, R. G., Sonkusare, V., Bhusari, G., Mondal, A., Potbhare, A., Juneja, H., Abdala, A., Sharma, R., Preparation of mesoporous ThO2 nanoparticles: influence of calcination on morphology and visible-Light-driven photocatalytic degradation of indigo carmine and methylene blue, Environ. Res., 2023, 222, 115363. https://doi.org/10.1016/j.envres.2023.115363
[124] Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, Walker G. Iron,copper and silver nanoparticles: green synthesis using green and black tealeaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1adsorption activity. LWT. 2018; 90:98-107. https://doi.org/10.1016/j.lwt.2017.12.009
[125] Roy K, Ghosh CK, Sarkar CK. Rapid detection of hazardous H2O2 by biogeniccopper nanoparticles synthesized using Eichhornia crassipes extract.Microsyst Technol. 2019; 25:1699-703. https://doi.org/10.1007/s00542-017-3480-z
[126] Zangeneh MM, Ghaneialvar H, Akbaribazm H, Ghanimatdan M, Abbasi N,Goorani S, Pirabbasi E, Zangeneh A. Novel synthesis of Falcaria vulgaris leafextract conjugated copper nanoparticles with potent cytotoxicity,antioxidant, antifungal, antibacterial, and cutaneous wound healingactivities under in vitro and in vivo condition. J PhotochemPhotobiolBBiol. 2019; 197:111556. https://doi.org/10.1016/j.jphotobiol.2019.111556
[127] Rajeshkumar S, Rinith G. Nanostructural characterization of antimicrobial andantioxidant copper nanoparticles synthesized using novel Perseaamericanaseeds. OpenNano. 2018; 3:18-27. https://doi.org/10.1016/j.onano.2018.03.001
[128] Kerour A, Boudjadar S, Bourzami R, Allouche B. Eco-friendly synthesis ofcuprous oxide (Cu2O) nanoparticles and improvement of their solarphotocatalytic activities. J Solid State Chem. 2018; 263:79-83. https://doi.org/10.1016/j.jssc.2018.04.010
[129] Mehr ES, Sorbiun M, Ramazani A, Fardood ST. Plant-mediated synthesis ofzinc oxide and copper oxide nanoparticles by using Ferulago angulate (Schlecht) Boiss extract and comparison of their photocatalytic degradationof Rhodamine B (RhB) under visible light irradiation. J Mater Sci MaterElectron. 2018; 29:1333-40. https://doi.org/10.1007/s10854-017-8039-3
[130] Potbhare, A., Bhilkar, P., Yerpude, S., Madankar, R. S., Shingda, S. Adhikari, R., Chaudhary, R., Nanomaterials as Photocatalyst, Appl. Emerg. Nanomater. Nanotechnol, 2023, 148, 304-333. https://doi.org/10.21741/9781644902554-11
[131] Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US. Greenbiosynthesis of CuO & Ag-CuO nanoparticles from Malus domestica leafextract and evaluation of antibacterial, antioxidant and DNA cleavageactivities. New J Chem. 2018; 42:204-13. https://doi.org/10.1039/C7NJ02977B
[132] Khatami M, Varma RS, Heydari M, Peydayesh M, Sedighi A, Askari HA, RohaniM, Baniasadi M, Arkia S, Seyedi F, Khatami S. Copper oxide nanoparticlesgreener synthesis using tea and its antifungal efficiency on Fusarium solani.Geomicrobiol J. 2019;36:777-81. https://doi.org/10.1080/01490451.2019.1621963
[133] Akhter SMH, Mohammad F, Ahmad S. Terminalia belerica mediated greensynthesis of nanoparticles of copper, iron and zinc metal oxides as thealternate antibacterial agents against some common pathogens.BioNanoSci. 2019; 9:365-72 https://doi.org/10.1007/s12668-019-0601-4
[134] Koul, B., Poonia, A. K., Yadav, D., & Jin, J. O. (2021). Microbe-mediated biosynthesis of nanoparticles: Applications and prospects. Biomolecules, 11(6), 886. https://doi.org/10.3390/biom11060886