Green Synthesis and emerging applications of iron based nanomaterials
Hina N. Chaudhari, Dipti D. Parmar, Charmi D. Patel, Rajshree B. Jotania
A vital motivation to investigate new synthesis methods for green-based iron nanoparticles (NPs) is their growing significance over the past ten years and the variety of uses for which they are used (biomedical, microwave absorbers, EMI shielding, etc.). Typically, they are magnetite (Fe3O4), maghemite (γ-Fe2O3), or a combination of the two, consisting of magnetic iron oxide nanoparticles. The term “green synthesis of nanomaterials” refers to the process of creating different metal nanoparticles using bioactive elements, including plant matter, microorganisms, and a range of bio-wastes like vegetable waste, fruit peel waste, eggshells, agricultural waste, etc. Nanoparticles synthesized by organic bioactive substances can reduce environmental damage. It is possible to produce less harmful by-products and dispose of organic waste and reagents by synthesizing iron nanoparticles in an aqueous medium under standard conditions (temperature and pressure).
Keywords
Iron Nanomaterials, Green Synthesis, Bio-Waste, Biomedical Application, EMI Shielding
Published online 10/20/2024, 22 pages
Citation: Hina N. Chaudhari, Dipti D. Parmar, Charmi D. Patel, Rajshree B. Jotania, Green Synthesis and emerging applications of iron based nanomaterials, Materials Research Foundations, Vol. 169, pp 59-80, 2024
DOI: https://doi.org/10.21741/9781644903261-3
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] L.A. Paramo, A.A. Feregrino-Perez, R. Guevara, S. Mendoza, K. Esquivel, Nanoparticles in agroindustry: applications, toxicity, challenges, and trends, Nanomaterials. 10 (2020) 1654.https://doi.org/10.3390/nano10091654
[2] D.E. Laughlin, D.N. Lambeth, Microstructural and crystallographic aspects of thin film recording media, IEEE Transactions on Magnetics. 36 (2000) 48-53.https://doi.org/10.1109/20.824424
[3] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles : surface effects and properties related to biomedicine applications, Int. J. Mol. Sci. 14 (2013) 21266-21305.https://doi.org/10.3390/ijms141121266
[4] S. Schrittwieser, D. Reichinger, J. Schotter, Applications, Surface modification and functionalization of nickel nanorods, Materials. 11 (2018) 45. https://doi.org/10.3390/ma11010045
[5] V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. LancerosMendez, Advances in Magnetic Nanoparticles for Biomedical Applications, Adv. Healthc. Mater. 7 (2018) 1700845. https://doi.org/10.1002/adhm.201700845
[6] M.I. Anik, M.K. Hossain, I. Hossain, A.M.U.B. Mahfuz, M.T. Rahman, I. Ahmed, Recent progress of magnetic nanoparticles in biomedical applications: A review, Nano Sel. 2 (2021) 1146–1186.https://doi.org/10.1002/nano.202000162
[7] N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges, J. Mater. Chem. 20 (2010) 8760.https://doi.org/10.1039/c0jm00994f
[8] S.R. Pandya, H. Singh, Surface-Tailored Iron Oxide Magnetic Nanomaterials for Biomedical Applications, Materials Research Foundations 143 (2023) 1-40. https://doi.org/10.21741/9781644902332-1
[9] R.C. Pullar, Applications of Magnetic Oxide Nanoparticles in Hyperthermia, Materials Research Foundations 143 (2023) 76-101. https://doi.org/10.21741/9781644902332-3
[10] Theophil, Renuka D, R. Radhakrishnan, L. Anandaraj, J.S Savarenathan, G. Ramalingam, C.M. Magdalane, A.K. Bashir, M. Maaza, K. Kaviyarasu, Green synthesis of ZnO nanoparticle using prunus dulcis (almond gum) for antimicrobial and supercapacitor applications. Surf Interfaces. 17 (2019) 100376.17:100376.https://doi:10.1016/j.surfin.2019.100376
[11] A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, M. Maaza, Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of sageretia thea (osbeck.) and their pharmacognostic properties. Green Chem Lett Rev. 10 (2017) 186–201.https://doi:10.1080/17518253.2017. 1339831
[12] B. Paul, S. Vadivel, S. Dhar, S. Debbarma, M. Kumaravel, One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives. J Phys Chem Solids. 104 (2017) 152–159. https://doi:10.1016/j. jpcs.2017.01.007
[13] M. Nasrollahzadeh, S.M. Sajadi, A. Vartooni, Green synthesis of cuo nanoparticles by aqueous extract of anthemis nobilis flowers and their catalytic activity for the A(3) coupling reaction. J Colloid Interface Sci. 459 (2015) 183–188.https://doi:10.1016/j.jcis.2015.08.020
[14] N. Joshi, J. Filip, V.S. Coker, J. Sadhukhan, I. Safarik, H. Bagshaw and J.R. Lloyd, Microbial reduction of natural Fe (III) minerals ; toward the sustainable production of functional magnetic nanoparticles, Front. Environ. Sci., 6 (2018) 1–11. https://doi.org/10.3389/fenvs.2018.00127
[15] S. Shukla, R. Khan, A. Daverey, Environmental Technology & Innovation Synthesis and characterization of magnetic nanoparticles , and their applications in wastewater treatment : A review, Environmental Technology and Innovation, 24 (2021) 101924. https://doi.org/10.1016/j.eti.2021.101924
[16] P. Singh, Y. Kim, D. Zhang, D. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends in Biotechnology, 34 (2016) 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006
[17] R.G. Chaudhary, A.K. Potbhare, P.B. Chouke, A.R. Rai, R. Mishra, M.F. Desimone, A.A. Abdala, Graphene-based materials and their nanocomposites with metal oxides : biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Material Research Forum. 83 (2020) 79-116. https://doi.org/10.21741/9781644900970-4
[18] P.B. Chouke, K.M. Dadure, A.K. Potbhare, G.S. Bhusari, A. Mondal, K. Chaudhary, V. Singh, M.F. Desimone, R.G. Chaudhary, D.T. Masram, Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking, ACS Omega, 2022, 7 (24),20983–20993.https://doi.org/10.1021/acsomega.2c01745d
[19] A.M. Awwad, N.M. Salem, A Green and Facile Approach for Synthesis of Magnetite Nanoparticles, nanoscience and nanotechnology, 2 (2012) 208-213. https://doi.org/10.5923/j.nn.201206.09
[20] A. Etemadi, H. Daraee, N. Zarghami, H.M. Yar, A. Akbarzadeh, Nanofiber: Synthesis and biomedical applications, Artificial Cells, Nanomedicine and Biotechnology, 44 (2011) 111-121.https://doi.org/10.3109/21691401.2014.922568
[21] J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, “Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnol. 16 (2018) 48. https://doi.org/10.1186/s12951-018-0408-4
[22] D.R. Lovley, J.F. Stolz, G.L. Nord, E.J.P. Phillips, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330 (1987) 252–254.https://doi.org/10.1038/330252a0
[23] P. Singh, Y.J. Kim, D. Zhang, D.C. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol. 34 (2016) 588–599. https://doi. org/10.1016/j.tibtech.2016.02.006
[24] S. Iravani, R.S. Varma, Bacteria in heavy metal remediation and nanoparticle biosynthesis, ACS Sustainable Chem. Eng. 8 (2020) 5395–5409.https://doi.org/ 10.1021/acssuschemeng.0c00292
[25] G.S. Dhillon, S.k. Brar, S. Kaur, M. Verma, Green approach for nanoparticle biosynthesis by fungi: current trends and applications, Crit. Rev. Biotechnol. 32 (2012) 49–73.http://doi.org/10.3109/07388551.2010.550568
[26] S. Godara, J. Prakash, R. Jasrotia, J. Ahmed, A. M. Tamboli, A. Hossain, Suman, A. Verma, P. Kumar, M. Singh, S. Verma, Rahul K. Dhaka, A. Kandwal, Green synthesis of magnetic nanoparticles of BaFe12O19 hexaferrites using tomato pulp: structural, morphological, optical, magnetic and dielectric traits, J Mater Sci: Mater Electron. 34 (2023) 1516. https://doi.org/10.1007/s10854-023-10859-z
[27] S. Banifatemi, E. Davar, B. Aghabaran, J. A. Segura, F. J. Alonso, S. M. Ghoreishi, Green synthesis of CoFe2O4 nanoparticles using olive leaf extract and characterization of their magnetic properties, Ceram. Int. 47 (2021) 19198-19204. https://doi.org/10.1016/j.ceramint.2021.03.267
[28] H. N. Chaudhari, P. N. Dhruv, C. Singh, S. S. Meena, S. Kavita, R. B. Jotania, Effect of heating temperature on structural, magnetic and dielectric properties of magnesium ferrites prepared in the presence of Solanum lycopersicum fruit extract, J. Mater. Sci.: Mater. Electron. 31 (2020) 18445-18463. https://doi.org/10.1007/s10854- 020-04389-1
[29] Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2011). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical Reviews in Biotechnology, 32(1), 49–73. https://doi.org/10.3109/07388551.2010.550568
[30] https://www.news-medical.net/life-sciences/What-are-Algae.aspx
[31] https://jpt.spe.org/bacteria-real-water-issue-hydraulic-fracturing
[32] https://www.sciencenews.org/article/aspergillus-fungi-mycotoxins-aflatoxin-food-contamination
[33] https://stock.adobe.com/search?k=yeast+cell
[34] https://www.aakash.ac.in/blog/web-stories/biology-modifications-of-root-stem-and-leaf-with-examples/
[35] https://www.healthyeating.org/nutrition-topics/general/food-groups/fruits
[36] https://www.healthline.com/nutrition/pine-bark-extract
[37] https://www.1800flowers.com/blog/flower-facts/flower-color-meanings/
[38] https://www.chuka.ac.ke/portfolio/bioprospecting-of-actinomycetes-for-production-of-bioactive-compounds-with-antibacterial-properties-from-various-soils/
[39] https://www.alamy.com/stock-photo-laboratory-conical-flask-with-green-liquid-isolated-on-white-117645937.html
[40] F.K. Alsammarraie, W. Wei, Z. Peng, A. Mustapha, L. Mengshi, Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities, Colloids Surf. B 171 (2018) 398–405. https://doi:10.1016/j.colsurfb.2018.07.059
[41] N. Kataria, V.K. Garg, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism, Chemosphere, 208 (2018) 818–828.https://doi:10.1016/j.chemosphere.2018.06.022
[42] M. Nasrollahzadeh, M. Sajadi, Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles, J. Colloid. Interface Sci. 462 (2016) 243–251. https://doi:10.1016/j.jcis.2015.09.065
[43] https://www.hydrogenlink.com/dyedecoloration
[44] https://www.biolinscientific.com/blog/how-to-characterize-biomolecular-interactions-with-qcm-d
[45] https://www.dreamstime.com/pressure-transmitter-monitor-sent-measuring-value-to-programmable-logic-controller-plc-to-control-oil-gas-process-image119734043
[46] https://www.verywellhealth.com/hyperthermia-and-cancer-5076038
[47] https://www.medindia.net/patients/patientinfo/drug-delivery-system.htm#about
[48] https://nano-magazine.com/news/2019/2/20/study-says-consumers-prefer-nanotechnology-in-active-food-packaging
[49] S.C. Tang, I.M. Lo, Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 47 (2013) 2613–2632. https://doi.org/ 10.1016/j.watres.2013.02.039
[50] M. Gil-Diaz, J. Alonso, E. Rodriguez-Valdes, J.R. Gallego, M.C. Lobo, Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfeld soil, Sci. Total Environ. 584 (2017) 1324–1332. https://doi.org/ 10.1016/j.scitotenv.2017.02.011
[51] X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100 (2016) 245–266. https://doi.org/10.1016/j. watres.2016.05.019
[52] L.G. Cullen, E.L. Tilston, G.R. Mitchell, C.D. Collins, L.J. Shaw, Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects, Chemosphere, 82 (2011) 1675–1682. https://doi.org/10.1016/j. chemosphere.2010.11.009
[53] A. Ronavari, M. Balazs, P. Tolmacsov, C.Molnar, I. Kiss, A. Kukovecz, Z.Konya, Impact of the morphology and reactivity of nanoscale zero-valent iron (nZVI) on dechlorinating bacteria, Water Res. 95 (2016) 165–173. https://doi.org/10.1016/j. watres.2016.03.019
[54] S.M.A.S. Keshk, S. Bondock, M. Abu Haija, Synthesis of a Magnetic Nanoparticles/Dialdehyde Starch-Based Composite Film for Food Packaging, Starch-Starke, 71 (2018), 1800035.https://doi: 10.1002/star.201800035
[55] S. Jafarzadeh, A. Salehabadi, A.M. Nafchi, N. Oladzadabbasabadi, S.M. Jafari, Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties, Trends Food Sci. Technol. 116 (2021) 218–231.https://doi:10.1016/j.tifs.2021.07.021
[56] M. Honglei, G. Haiyan, Ch. Hangjun, T. Fei, F. Xiangjun, G. Linmei, A nanosised oxygen scavenger: Preparation and antioxidant application to roasted sunflower seeds and walnuts, Food Chem. 136 (2013) 245–250. https://doi: 10.1016/j.foodchem.2012.07.121
[57] Z. Foltynowicz, A. Bardenshtein, S. Sängerlaub, H. Antvorskov, W. Kozak, Nanoscale, zero valent iron particles for application as oxygen scavenger in food packaging, Food Packag. Shelf Life. 11 (2017) 74–83. https://doi.org/10.1016/j.fpsl.2017.01.003
[58] C. Vilela, M. Kurek, Z. Hayouka, B. Röcker, S. Yildirim, M.D.C. Antunes, J. Nilsen-Nygaard, M.K. Pettersen, C.S.R. Freire, A concise guide to active agents for active food packaging, Trends Food Sci. Technol. 80 (2018) 212–222.https://doi.org/10.21256/zhaw-10457
[59] M.A. Busolo, J.M. Lagaron, Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications, Innov. Food Sci. Emerg. Technol. 16 (2012) 211–217. https://doi: 10.1016/j.ifset.2012.06.008
[60] EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the safety assessment of the active substances iron, iron oxides, sodium chloride and calcium hydroxide for use in food contact materials. EFSA J. 11(10) (2013) 3387. https://doi.org/10.2903/j.efsa.2013.3387
[61] M.J. Khalaj, H. Ahmadi, R. Lesankhosh, G. Khalaj, Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles, Trends Food Sci. Technol.,51 (2016) 41–48. http://dx.doi.org/10.1016/j.tifs.2016.03.007
[62] T.R.N. Mary, R. Jayavel, Fabrication of chitosan/Cashew Nut Shell Liquid/plant extracts-based bio-formulated nanosheets with embedded iron oxide nanoparticles as multi-functional barrier resist eco-packaging material, Appl. Nanosci. 12 (2022) 1719–1730.https://doi:10.1007/s13204-022-02377-x
[63] D. Diamond, Principles of Chemical and Biological Sensors (Ed.: D.Diamond), John Wiley & Sons, New York, NY 1998, 1–18. https://www.wiley.com/en-us/9780471546191
[64] N.L. Rosi, C.A. Mirkin, Nanostructures in Biodiagnostics, Chem. Rev. 105 (2005) 1547-1562. https://doi.org/10.1021/cr030067f
[65] P.E. Sheehan, L.J. Whitman, Detection limits for nanoscale biosensors, Nano Lett. 5 (4) (2005) 803-7.https:// doi: 10.1021/nl050298x
[66] M.C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev. 104 (2004) 293-346. https://doi.org/10.1021/cr030698+
[67] P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B, 110 (2006) 7238-7248. https://doi.org/10.1021/jp057170o
[68] G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions, Ann. Phys. 25 (1908) 377-445. https://doi.org/10.1002/andp.19083300302
[69] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, 107 (2003) 668-677. https://doi.org/10.1021/jp026731y
[70] S. Eustis, M.A. El-Sayed, Gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev. 35 (2006) 209-217. https://doi.org/10.1039/B514191E
[71] K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles, Nano Lett. 3 (2003) 1087-1090. https://doi.org/10.1021/nl034197f
[72] K.E. Sapsford, L. Berti, I.L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations, Chem. Int. Ed. 45 (2006) 4562. https://doi.org/10.1002/anie.200503873
[73] K.G. Thomas, P.V. Kamat, Chromophore-Functionalized Gold Nanoparticles, Acc. Chem. Res. 36 (2003) 888-898. https://doi.org/10.1021/ar030030h
[74] J. Zheng, C. Zhang, R.M. Dickson, Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots, Phys. Rev. Lett. 93 (2004) 077402. https://doi.org/10.1103/PhysRevLett.93.077402
[75] M.A. van Dijk, M. Lippitz, M. Orrit, Far-Field Optical Microscopy of Single Metal Nanoparticles, Acc. Chem. Res. 38 (2005) 594-601. https://doi.org/10.1021/ar0401303
[76] J.R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, Anal. Biochem. 337 (2005) 171-194. https://doi.org/10.1016/j.ab.2004.11.026
[77] K. Rajendran, V. Karunagaran, B. Mahanty, S. Sen, Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells, Int. J. Biol. Macromol. 74 (2015) 376–381. https://doi.org/10.1016/j.ijbiomac.2014.12.028
[78] S. Kossatz, J. Grandke, P. Couleaud, A. Latorre, A. Aires, K. Crosbie-Staunton, R.Ludwig, H. Dahring, V. Ettelt, A. LazaroCarrillo, M. Calero, M. Sader, J. Courty, Y. Volkov, A. Prina-Mello, A. Villanueva, A. Somoza, A.L. Cortajarena, R. Miranda, I. Hilger, Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery, Breast Cancer Res. 17 (2015) 1–17. https://doi.org/10.1186/s13058-015-0576-1
[79] N. Sangeetha, A.K. Kumaraguru, Antitumor effects and characterization of Biosynthesized Iron Oxide nanoparticles using Seaweeds of Gulf of mannar, Int. J. Pharm. Pharm. Sci. 7 (2015) 469-476.https://journals.innovareacademics.in/index.php/ijpps/article/view/3755
[80] Z. Chen, B. Li, J. Zhang, L. Qin, D. Zhou, Y. Han, Z. Du, Z. Guo, Y. Song, R. Yang, Quorum sensing affects virulence associated proteins F1, LcrV, KatY and pH6 etc. of Yersinia pestis as revealed by protein microarray-based antibody profiling, Microbes Infect. 8 (2006) 2501-2508. https://doi.org/10.1016/j.micinf.2006.06.007
[81] K.J. Widder, A.E. Senyei, D.F. Ranney, Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumour agents, J. Adv. Pharmacol. Chemother. 16 (1979) 213-271. https://doi.org/10.1016/S1054-3589(08)60246-X
[82] G. Unsoy, U. Gunduz, O. Oprea, D. Ficai, M. Sonmez, M. Radulescu, M. Alexie, A. Ficai, Magnetite: from synthesis to applications, Curr Top Med Chem. 15 (2015) 1622-1640. https://doi.org/10.2174/1568026615666150414153928
[83] P. Theamdee, R. Traiphol, B. Rutnakornpituk, U. Wichai, M. Rutnakornpituk, Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer, J. Nano. Part. Res. 13 (2011) 4463-4477. https://doi.org/10.1007/s11051-011-0399-7
[84] D. Dorniani, A.U. Kura, S.H. Hussein-Al-Ali, M.Z. Bin Hussein, S. Fakurazi, A.H. Shaari, Z. Ahmad, Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Coated Magnetite Nanoparticles Delivery System, Sci. World J. 2014 (2014) 1-11. https://doi.org/10.1155/2014/972501
[85] A.F. Wang, W.X. Qi, N. Wang, J.Y. Zhao, F. Muhammad, K. Cai, H. Ren, F.X. Sun, L. Chen, Y.J. Guo, M.Y. Guo, G.S. Zhu, A smart nanoporoustheranostic platform for simultaneous enhanced MRI and drug delivery, Micropor. Mesopor. Mat. 180 (2013) 1-7. https://doi.org/10.1016/j.micromeso.2013.06.015
[86] N.K. Verma, K. Crosbie-Staunton, A. Satti, S. Gallagher, K.B. Ryan, T. Doody, C. McAtamney, R. MacLoughlin, P. Galvin, C.S. Burke, Y. Volkov, Y.K. Gun’ko, Magnetic core-shell nanoparticles for drug delivery by nebulization, J. Nanobiotechnol. 11 (2013) 1-12. https://doi.org/10.1186/1477-3155-11-1
[87] Q. Yuan, R. Venkatasubramanian, S. Hein, R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-graftedcopolymer, Acta. Biomater. 4 (2008) 1024-1037. https://doi.org/10.1016/j.actbio.2008.02.002
[88] G. Unsoy, S. Yalcin, R. Khodadust, P. Mutlu, O. Onguru, U. Gunduz, Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy, Biomed. Pharma. 68 (2014) 641-648. https://doi.org/10.1016/j.biopha.2014.04.003
[89] G. Unsoy, R. Khodadust, S. Yalcin, P. Mutlu, U. Gunduz, Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery, Eur. J Pharm. Sci. 62 (2014) 234-250. https://doi.org/10.1016/j.ejps.2014.05.021
[90] M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, A. Takakura, S. Fujii, In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel, J. Cont. Rel. 103 (2005) 7-19. https://doi.org/10.1016/j.jconrel.2004.11.014
[91] J.H. Kim, Y.S. Kim, K. Park, S. Lee, H.Y. Nam, K.H. Min, H.G. Jo, J.H. Park, K. Choi, S.Y. Jeong, R.W. Park, I.S. Kim, K. Kim, I.C. Kwon, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumour-bearing mice, J. Cont. Rel. 127 (2008) 41-49. https://doi.org/10.1016/j.jconrel.2007.12.014
[92] S. Khizar, N.M. Ahmad, N. Line, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, Magnetic nanoparticles: from synthesis to therapeutic applications, ACS Appl. Nano. Mater. 4 (2021) 4284-4306. https://doi.org/10.1021/acsanm.1c00852
[93] R.T. Gordon, J.R. Hines, D. Gordon, Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypothesis 5 (1979) 83-102. https://doi.org/10.1016/0306-9877(79)90063-X
[94] P.M. Martins, A.C. Lima, S. Ribeiro, S. Lanceros-Mendez, P. Martins, Magnetic nanoparticles for biomedical applications: from the soul of the earth to deep history of ourselves, ACS Appl. Bio. Mater. 4 (2021) 5839-5870. https://doi.org/10.1021/acsabm.1c00440
[95] K. Tofani, S. Tiari, Magnetic nanoparticle hyperthermia for cancer treatment: a review on nanoparticle types and thermal analyses, ASME of Medicinal Diagnostics 4(2021) 030801. https://doi.org/10.1115/1.4051293
[96] K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity, Mater. Sci. Eng. C 107 (2020) 110314. https://doi.org/10.1016/j.msec.2019.110314
[97] D. Chang, M. Lim, J.A.C.M. Goos, R. Qiao, X.Y. Ng, F.M. Mansfeld, M. Jackson, T.P. Davis, M. Kavallaris, Front. Pharmacol. 9 (2018) 831. https://doi.org/10.3389/fphar.2018.00831
[98] P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyperthermia for cancer therapy, Colloids Surf. B 174 (2019) 42-55. https://doi.org/10.1016/j.colsurfb.2018.10.051
[99] Y. Wang, Y. Miao, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu, H. Fan, Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications, Mater. Today Adv. 8 (2020) 100119. https://doi.org/10.1016/j.mtadv.2020.100119
[100] O. Polozhentsev, A.V. Soldatov, Efficiency of heating magnetite nanoparticles with different surface morphologies for the purpose of hyperthermia, J. Surf. Investig. 15 (2021) 799-805. https://doi.org/10.1134/S1027451021040364
[101] Y. Tang, R.C.C. Flesch, T. Jin, Y. Gao, M. Ho, Effect of nanoparticle shape on therapeutic temperature distribution during magnetic hyperthermia, J. Phys. D: Appl. Phys. 54 (2021) 165401. https://doi.org/10.1088/1361-6463/abdb0e
[102] A.J. Rajan, N.K. Sahu, Hydrophobic-tohydrophylic transition of Fe3O4 nanorods for magnetically induced hyperthermia, ACS Appl. Nano. Mater. 4 (2021) 4642-4653. https://doi.org/10.1021/acsanm.1c00274
[103] S. Rahim, F. Jan Iftikhar, M.I. Malik, Biomedical applications of magnetic nanoparticles, in: M.R. Shah, M. Imran, S.B.T.-M.N. for D.D. and D.A. Ullah (Eds.), Micro Nano Technol., Elsevier, (2020) 301-328. https://doi.org/10.1016/B978-0-12-816960-5.00016-1