Green silver nanoparticles: Synthesis, characterization and applications
Fátima Ibarra, Sofía Municoy, Pablo E. Antezana, Fresia Silva Sofrás, Pablo Santo Orihuela, Martín F. Desimone
Since the first synthesis in the 19th century, silver nanoparticles (AgNPs) have been used for several applications, mainly for its bactericidal properties. Although physical and chemical methods are the most used approaches for preparing AgNPs, in recent years they have been replaced by eco-friendlier, cost-effective and simpler methods. Thus, green synthesis employing bacteria, plant extracts and fungi for the reduction of silver to AgNPs has emerged as an interesting alternative. The use of plants for synthesizing AgNPs involves the preparation of aqueous extracts from the roots, leaves or stems to obtain secondary metabolites with antioxidant activity that reduce silver salts (i.e.: AgNO3) or act as capping agents of the AgNPs. In case of green synthesis based on bacteria, the microorganisms are first cultivated in a suitable medium and then silver salts are added. When fungi are used for the synthesis, the fungus is frequently cultured on agar, then transferred to a liquid media and the biomass generated placed in water to recover the active compounds. After filtering, the biomass is removed and the filtrate is mixed with AgNO3. Depending on the synthesis procedures, AgNPs of different size and shape are generated. In the present chapter, different methods based on the green synthesis of silver nanoparticles and the multiple applications of the AgNPs thus prepared will be discussed.
Keywords
Silver Nanoparticles, Green Synthesis, Plant Extracts, Bacteria, Fungi
Published online 10/20/2024, 24 pages
Citation: Fátima Ibarra, Sofía Municoy, Pablo E. Antezana, Fresia Silva Sofrás, Pablo Santo Orihuela, Martín F. Desimone, Green silver nanoparticles: Synthesis, characterization and applications, Materials Research Foundations, Vol. 169, pp 35-58, 2024
DOI: https://doi.org/10.21741/9781644903261-2
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] A. Kaushal, I. Khurana, P. Yadav, P. Allawadhi, A.K. Banothu, D. Neeradi, S. Thalugula, P.J. Barani, R.R. Naik, U. Navik, K.K. Bharani, A. Khurana, Advances in therapeutic applications of silver nanoparticles, Chem. Biol. Interact., 382 (2023) 110590. https://doi.org/10.1016/j.cbi.2023.110590
[2] K.G. Kaiser, V. Delattre, V.J. Frost, G.W. Buck, J. V Phu, T.G. Fernandez, I.E. Pavel, Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance, Antibiotics, 12 (2023). https://doi.org/10.3390/antibiotics12081264
[3] A. Balestri, J. Cardellini, D. Berti, Gold and silver nanoparticles as tools to combat multidrug-resistant pathogens, Curr. Opin. Colloid Interface Sci., 66 (2023) 101710. https://doi.org/10.1016/j.cocis.2023.101710
[4] J.R. Ansari, N. Singh, S. Anwar, S. Mohapatra, A. Datta, Silver nanoparticles decorated two dimensional MoS2 nanosheets for enhanced photocatalytic activity, Colloids Surfaces A Physicochem. Eng. Asp., 635 (2022) 128102. https://doi.org/10.1016/j.colsurfa.2021.128102
[5] H. Tabassum, I.Z. Ahmad, Applications of metallic nanomaterials for the treatment of water, Lett. Appl. Microbiol., 75 (2022) 731–743. https://doi.org/10.1111/lam.13588
[6] A.K. Bhardwaj, S. Sundaram, K.K. Yadav, A.L. Srivastav, An overview of silver nano-particles as promising materials for water disinfection, Environ. Technol. Innov., 23 (2021) 101721. https://doi.org/10.1016/j.eti.2021.101721
[7] V.S. Andrade, A. Ale, P.E. Antezana, M.F. Desimone, J. Cazenave, M.F. Gutierrez, Ecotoxicity of nanosilver on cladocerans and the role of algae provision, Environ. Sci. Pollut. Res., 30 (2023) 27137–27149. https://doi.org/10.1007/s11356-022-24154-7
[8] A. Ale, G. Liberatori, M.L.M.L. Vannuccini, E. Bergami, S. Ancora, G. Mariotti, N. Bianchi, J.M.J.M.J.M. Galdopórpora, M.F.M.F. Desimone, J. Cazenave, I. Corsi, Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis, Aquat. Toxicol., 211 (2019) 46–56. https://doi.org/10.1016/j.aquatox.2019.03.018
[9] A. Ale, C. Bacchetta, A.S. Rossi, J. Galdopórpora, M.F. Desimone, F.R. de la Torre, S. Gervasio, J. Cazenave, Nanosilver toxicity in gills of a neotropical fish: Metal accumulation, oxidative stress, histopathology and other physiological effects, Ecotoxicol. Environ. Saf., 148 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.072
[10] M. Garcés, N.D. Magnani, A. Pecorelli, V. Calabró, T. Marchini, L. Cáceres, E. Pambianchi, J. Galdoporpora, T. Vico, J. Salgueiro, M. Zubillaga, M.A. Moretton, M.F. Desimone, S. Alvarez, G. Valacchi, P. Evelson, Alterations in oxygen metabolism are associated to lung toxicity triggered by silver nanoparticles exposure, Free Radic. Biol. Med., 166 (2021) 324–336. https://doi.org/10.1016/j.freeradbiomed.2021.02.008
[11] P.E. Antezana, S. Municoy, M.F. Desimone, 1 – Building nanomaterials with microbial factories, in: R. Pratap Singh, A.R. Rai, A. Abdala, R.G.B.T.-B.S.N. Chaudhary (Eds.), Micro Nano Technol., Elsevier, 2022: pp. 1–39. https://doi.org/10.1016/B978-0-323-88535-5.00012-3
[12] R.G. Chaudhary, M.F. Desimone, Synthesis, Characterization, and Applications of Green Synthesized Nanomaterials (Part 1), Curr. Pharm. Biotechnol., 22 (2021) 722–723. https://doi.org/10.2174/138920102206210521165455
[13] P.R. Bhilkar, A.S. Bodhne, S.T. Yerpude, R.S. Madankar, S.R. Somkuwar, A.R. Daddemal-Chaudhary, A.P. Lambat, M. Desimone, R. Sharma, R.G. Chaudhary, Phyto-derived metal nanoparticles: Prominent tool for biomedical applications, OpenNano, 14 (2023) 100192. https://doi.org/10.1016/j.onano.2023.100192
[14] J.M. Galdopórpora, A. Ibar, M.V. Tuttolomondo, M.F. Desimone, Dual-effect core–shell polyphenol coated silver nanoparticles for tissue engineering, Nano-Structures & Nano-Objects, 26 (2021) 100716. https://doi.org/10.1016/j.nanoso.2021.100716
[15] H. Singh, M.F. Desimone, S. Pandya, S. Jasani, N. George, M. Adnan, A. Aldarhami, A.S. Bazaid, S.A. Alderhami, Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications, Int. J. Nanomedicine, 18 (2023) 4727–4750. https://doi.org/10.2147/IJN.S419369
[16] S.S. Shankar, A. Ahmad, M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Prog., 19 (2003) 1627–1631. https://doi.org/10.1021/bp034070w
[17] S. Kumar, I.B. Basumatary, H.P.K. Sudhani, V.K. Bajpai, L. Chen, S. Shukla, A. Mukherjee, Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review, Trends Food Sci. Technol., 112 (2021) 651–666. https://doi.org/10.1016/j.tifs.2021.04.031
[18] H.B. Habeeb Rahuman, R. Dhandapani, S. Narayanan, V. Palanivel, R. Paramasivam, R. Subbarayalu, S. Thangavelu, S. Muthupandian, Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications, IET Nanobiotechnology, 16 (2022) 115–144. https://doi.org/10.1049/nbt2.12078
[19] C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv., 11 (2021) 2804–2837. https://doi.org/10.1039/D0RA09941D
[20] S. Simon, N.R.S. Sibuyi, A.O. Fadaka, S. Meyer, J. Josephs, M.O. Onani, M. Meyer, A.M. Madiehe, Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles, Biomedicines, 10 (2022). https://doi.org/10.3390/biomedicines10112792
[21] . Ritu, K. Verma, A. Das, P. Chandra, Phytochemical-Based Synthesis of Silver Nanoparticle: Mechanism and Potential Applications, Bionanoscience, 13 (2023) 1–22. https://doi.org/10.1007/s12668-023-01125-x
[22] R. Rajan, K. Chandran, S.L. Harper, S.-I. Yun, P.T. Kalaichelvan, Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials, Ind. Crops Prod., 70 (2015) 356–373. https://doi.org/10.1016/j.indcrop.2015.03.015
[23] H.P. Borase, B.K. Salunke, R.B. Salunkhe, C.D. Patil, J.E. Hallsworth, B.S. Kim, S. V Patil, Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles, Appl. Biochem. Biotechnol., 173 (2014) 1–29. https://doi.org/10.1007/s12010-014-0831-4
[24] F. Arshad, G.A. Naikoo, I.U. Hassan, S.R. Chava, M. El-Tanani, A.A. Aljabali, M.M. Tambuwala, Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective, Appl. Biochem. Biotechnol., (2023) 1–34. https://doi.org/10.1007/s12010-023-04719-z
[25] S. Arokiyaraj, M.V. Arasu, S. Vincent, N.U. Prakash, S.H. Choi, Y.-K. Oh, K.C. Choi, K.H. Kim, Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study, Int. J. Nanomedicine, 9 (2014) 379–388. https://doi.org/10.2147/IJN.S53546
[26] H. Padalia, P. Moteriya, S. Chanda, Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential, Arab. J. Chem., 8 (2015) 732–741. https://doi.org/10.1016/j.arabjc.2014.11.015
[27] B. Devaraj, V. Bhuvaneshwari, Evaluation of the Cytotoxic and Antioxidant Activity of Phyto-synthesized Silver Nanoparticles Using Cassia angustifolia Flowers, Bionanoscience, 9 (2019) 155–163. https://doi.org/10.1007/s12668-018-0577-5
[28] K. Logaranjan, A.J. Raiza, S.C.B. Gopinath, Y. Chen, K. Pandian, Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity, Nanoscale Res. Lett., 11 (2016) 520. https://doi.org/10.1186/s11671-016-1725-x
[29] Y. Rout, S. Behera, A.K. Ojha, P.L. Nayak, Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities, J. Microbiol. Antimicrob., 4 (2012) 103–109. https://doi.org/10.5897/JMA11.060
[30] A. Rwalinda, S.Ravikumar, Green Synthesis of Silver Nanoparticles Using Acacia Nilotica Leaf Extract and Its Antibacterial and Anti Oxidant Activity, Int. J. Pharm. Chem. Sci., 4 (2015) 433–444.
[31] G.K. Devi, K. Sathishkumar, Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity, IET Nanobiotechnology, 11 (2017) 143–151. https://doi.org/10.1049/iet-nbt.2015.0054
[32] M. Oves, M. Aslam, M.A. Rauf, S. Qayyum, H.A. Qari, M.S. Khan, M.Z. Alam, S. Tabrez, A. Pugazhendhi, I.M.I. Ismail, Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera, Mater. Sci. Eng. C. Mater. Biol. Appl., 89 (2018) 429–443. https://doi.org/10.1016/j.msec.2018.03.035
[33] T. Sujin Jeba Kumar, C.K. Balavigneswaran, R. Moses Packiaraj, A. Veeraraj, S. Prakash, Y. Natheer Hassan, K.P. Srinivasakumar, Green Synthesis of Silver Nanoparticles by Plumbago indica and Its Antitumor Activity Against Dalton’s Lymphoma Ascites Model, Bionanoscience, 3 (2013) 394–402. https://doi.org/10.1007/s12668-013-0102-9
[34] R. Geethalakshmi, D.V.L. Sarada, Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties, Int. J. Nanomedicine, 7 (2012) 5375–5384. https://doi.org/10.2147/IJN.S36516
[35] U.K. Sur, B. Ankamwar, S. Karmakar, A. Halder, P. Das, Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha, Mater. Today Proc., 5 (2018) 2321–2329. https://doi.org/10.1016/j.matpr.2017.09.236
[36] M.A. Quinteros, V. Cano Aristizábal, P.R. Dalmasso, M.G. Paraje, P.L. Páez, Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity, Toxicol. Vitr. an Int. J. Publ. Assoc. with BIBRA, 36 (2016) 216–223. https://doi.org/10.1016/j.tiv.2016.08.007
[37] J.M. Galdopórpora, S. Municoy, F. Ibarra, V. Puente, P.E. Antezana, M.I.A. Echazú, M.F. Desimone, A Green Synthesis Method to Tune the Morphology of CuO and ZnO NanostructuresNo Title, Curr. Nanosci., 17 (2022).
[38] M. Asif, R. Yasmin, R. Asif, A. Ambreen, M. Mustafa, S. Umbreen, Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential, Dose. Response., 20 (2022) 15593258221088708. https://doi.org/10.1177/15593258221088709
[39] A.K. Giri, B. Jena, B. Biswal, A.K. Pradhan, M. Arakha, S. Acharya, L. Acharya, Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC extract and activity against biofilm-producing bacteria, Sci. Rep., 12 (2022) 8383. https://doi.org/10.1038/s41598-022-12484-y
[40] S.K. Srikar, D.D. Giri, D.B. Pal, P.K. Mishra, S.N. Upadhyay, Green Synthesis of Silver Nanoparticles: A Review, Green Sustain. Chem., 6 (2016) 34–56. https://doi.org/10.4236/gsc.2016.61004
[41] M.A. Huq, M. Ashrafudoulla, M.M. Rahman, S.R. Balusamy, S. Akter, Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review, Polymers (Basel)., 14 (2022) 1–22. https://doi.org/10.3390/polym14040742
[42] P.E. Antezana, S. Municoy, M.F. Desimone, Building nanomaterials with microbial factories, in: Raghvendra Pratap Singh, A. Abdala, A.R. Rai, Ratiram G. Chaudhary (Eds.), Biog. Sustain. Nanotechnol., Elsevier, 2022: pp. 1–39. https://doi.org/10.1016/B978-0-323-88535-5.00012-3
[43] N. Alfryyan, M.G.M. Kordy, M. Abdel-Gabbar, H.A. Soliman, M. Shaban, Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue, Sci. Rep., 12 (2022) 1–14. https://doi.org/10.1038/s41598-022-16029-1
[44] A. Javaid, S.F. Oloketuyi, M.M. Khan, F. Khan, Diversity of Bacterial Synthesis of Silver Nanoparticles, Bionanoscience, 8 (2018) 43–59. https://doi.org/10.1007/s12668-017-0496-x
[45] E. Janeeshma, P. Sameena, J.T. Puthur, Application of biogenic nanoparticles in the remediation of contaminated water, in: P. Singh, V. Kumar, M. Bakshi, C.M. Hussain, M. Sillanpää (Eds.), Environ. Appl. Microb. Nanotechnol. Emerg. Trends Environ. Remediat., Elsevier Science, 2022: pp. 33–41. https://doi.org/10.1016/B978-0-323-91744-5.00023-0
[46] S.I. Tsekhmistrenko, V.S. Bityutskyy, O.S. Tsekhmistrenko, L.P. Horalskyi, N.O. Tymoshok, M.Y. Spivak, Bacterial synthesis of nanoparticles: A green approach, Biosyst. Divers., 28 (2020) 9–17. https://doi.org/10.15421/012002
[47] K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surfaces B Biointerfaces, 65 (2008) 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018
[48] S. Municoy, P.E. Antezana, C.J. Pérez, M.G. Bellino, M.F. Desimone, Tuning the antimicrobial activity of collagen biomaterials through a liposomal approach, J. Appl. Polym. Sci., n/a (2020) 50330. https://doi.org/10.1002/app.50330
[49] S. V. Otari, R.M. Patil, S.J. Ghosh, N.D. Thorat, S.H. Pawar, Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., 136 (2015) 1175–1180. https://doi.org/10.1016/j.saa.2014.10.003
[50] M. Cappelletti, A. Presentato, E. Piacenza, A. Firrincieli, R.J. Turner, D. Zannoni, Biotechnology of Rhodococcus for the production of valuable compounds, Appl. Microbiol. Biotechnol., 104 (2020) 8567–8594. https://doi.org/10.1007/s00253-020-10861-z
[51] S. Municoy, P.E. Antezana, M.G. Bellino, M.F. Desimone, Development of 3D-Printed Collagen Scaffolds with In-Situ Synthesis of Silver Nanoparticles, Antibiotics, 12 (2023) 1–19. https://doi.org/10.3390/antibiotics12010016
[52] P.E. Antezana, S. Municoy, C.J. Perez, M.F. Desimone, Collagen Hydrogels Loaded with Silver Nanoparticles and Cannabis Sativa Oil, Antibiotics, 10 (2021) 1–18. https://doi.org/10.3390/antibiotics10111420
[53] T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver Nanoparticles and Their Antibacterial Applications, Int. J. Mol. Sci., 22 (2021) 7202. https://doi.org/10.3390/ijms22137202
[54] S. Seshadri, A. Prakash, M. Kowshik, Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp PR58-8, Bull. Mater. Sci., 35 (2012) 1201–1205. https://doi.org/10.1007/s12034-012-0417-0
[55] Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G, Intracellular and Extracellular Biosynthesis of Silver Nanoparticles By Using Marine Bacteria Vibrio Alginolyticus, An Int. J., 3 (2013) 21–25.
[56] A. Banik, M. Vadivel, M. Mondal, N. Sakthivel, Molecular Mechanisms that Mediate Microbial Synthesis of Metal Nanoparticles, (2022) 135–166. https://doi.org/10.1007/978-3-030-97185-4_6
[57] S. Gurunathan, J.W. Han, V. Eppakayala, M. Jeyaraj, J.H. Kim, Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells, Biomed Res. Int., 2013 (2013). https://doi.org/10.1155/2013/535796
[58] T.A. Jorge de Souza, L.R. Rosa Souza, L.P. Franchi, Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity, Ecotoxicol. Environ. Saf., 171 (2019) 691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095
[59] D. Garg, A. Sarkar, P. Chand, P. Bansal, D. Gola, S. Sharma, S. Khantwal, Surabhi, R. Mehrotra, N. Chauhan, R.K. Bharti, Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review, Prog. Biomater., 9 (2020) 81–95. https://doi.org/10.1007/s40204-020-00135-2
[60] C.G. Kumar, S.K. Mamidyala, Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa, Colloids Surfaces B Biointerfaces, 84 (2011) 462–466. https://doi.org/10.1016/j.colsurfb.2011.01.042
[61] F. Ameen, S. AlYahya, M. Govarthanan, N. ALjahdali, N. Al-Enazi, K. Alsamhary, W.A. Alshehri, S.S. Alwakeel, S.A. Alharbi, Soil bacteria Cupriavidus sp mediates the extracellular synthesis of antibacterial silver nanoparticles, J. Mol. Struct., 1202 (2020) 127233. https://doi.org/10.1016/j.molstruc.2019.127233
[62] M. Iqtedar, M. Aslam, M. Akhyar, A. Shehzaad, R. Abdullah, A. Kaleem, Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens, Prep. Biochem. Biotechnol., 49 (2019) 136–142. https://doi.org/10.1080/10826068.2018.1550654
[63] M.A. Huq, S. Akter, Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms, Materials (Basel)., 14 (2021) 2615. https://doi.org/10.3390/ma14102615
[64] A. Matei, S. Matei, G.M. Matei, G. Cogąlniceanu, C.P. Cornea, Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity, Eurobiotech J., 4 (2020) 97–103. https://doi.org/10.2478/ebtj-2020-0011
[65] U. Farooq, X. Liu, W. Zhou, M. Hassan, L. Niu, L. Meng, Cell lysis induced by nanowire collision based on acoustic streaming using surface acoustic waves, Sensors Actuators B Chem., 345 (2021) 130335. https://doi.org/10.1016/j.snb.2021.130335
[66] A. Abdel-Hadi, D. Iqbal, R. Alharbi, S. Jahan, O. Darwish, B. Alshehri, S. Banawas, M. Palanisamy, A. Ismail, S. Aldosari, M. Alsaweed, Y. Madkhali, M. Kamal, F. Fatima, Myco-Synthesis of Silver Nanoparticles and Their Bioactive Role against Pathogenic Microbes, Biology (Basel)., 12 (2023). https://doi.org/10.3390/biology12050661
[67] A. Dhaka, S. Chand Mali, S. Sharma, R. Trivedi, A review on biological synthesis of silver nanoparticles and their potential applications, Results Chem., 6 (2023) 101108. https://doi.org/10.1016/j.rechem.2023.101108
[68] M. Guilger-Casagrande, R. de Lima, Synthesis of Silver Nanoparticles Mediated by Fungi: A Review , Front. Bioeng. Biotechnol. 7 (2019). https://doi.org/10.3389/fbioe.2019.00287
[69] B.F. Costa Silva LP, Oliveira JP, Keijok WJ, da Silva AR, Aguiar AR, Guimarães MCC, Ferraz CM, Araújo JV, Tobias FL, Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans, Int J Nanomedicine, 12 (2017) 6373–6381. https://doi.org/10.2147/IJN.S137703
[70] E.M. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels, Int J Nanomedicine, 12 (2017) 759–777. https://doi.org/10.2147/IJN.S124294
[71] R.M. Elamawi, R.E. Al-Harbi, A.A. Hendi, Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi, Egypt. J. Biol. Pest Control, 28 (2018) 28. https://doi.org/10.1186/s41938-018-0028-1
[72] S.H. Lee, B.-H. Jun, Silver Nanoparticles: Synthesis and Application for Nanomedicine, Int. J. Mol. Sci., 20 (2019). https://doi.org/10.3390/ijms20040865
[73] S. Rajput, R. Werezuk, R.M. Lange, M.T. McDermott, Fungal Isolate Optimized for Biogenesis of Silver Nanoparticles with Enhanced Colloidal Stability, Langmuir, 32 (2016) 8688–8697. https://doi.org/10.1021/acs.langmuir.6b01813
[74] K. Gudikandula, P. Vadapally, M.A. Singara Charya, Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies, OpenNano, 2 (2017) 64–78. https://doi.org/10.1016/j.onano.2017.07.002
[75] R.G. Saratale, I. Karuppusamy, G.D. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, G.S. Ghodake, R.N. Bharagava, J.R. Banu, H.S. Shin, A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications, Colloids Surfaces B Biointerfaces, 170 (2018) 20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045
[76] S. Tyagi, P.K. Tyagi, D. Gola, N. Chauhan, R.K. Bharti, Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential, SN Appl. Sci., 1 (2019) 1545. https://doi.org/10.1007/s42452-019-1593-y
[77] D. Wang, B. Xue, L. Wang, Y. Zhang, L. Liu, Y. Zhou, Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities, Sci. Rep., 11 (2021) 10356. https://doi.org/10.1038/s41598-021-89854-5
[78] Y.K. Mohanta, D. Nayak, A.K. Mishra, I. Chakrabartty, M.K. Ray, T.K. Mohanta, K. Tayung, R. Rajaganesh, M. Vasanthakumaran, S. Muthupandian, K. Murugan, G. Sharma, H.-U. Dahms, J.-S. Hwang, Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities, Int. J. Mol. Sci., 23 (2022). https://doi.org/10.3390/ijms231810626