Green synthesis of gold nanoparticles

$40.00

Green synthesis of gold nanoparticles

Matthew Ogoe, Komal Janiyani, Harjeet Singh, Shivani R Pandya

The green synthesis of gold nanoparticles (AuNPs) represents a revolutionary shift in nanotechnology, aligning with sustainability and environmental conservation principles. Traditional methods for synthesizing AuNPs often involve toxic chemicals and harsh conditions, raising concerns about their environmental and health impacts. Green synthesis leverages natural resources such as plant extracts, microorganisms, and benign chemical agents to produce AuNPs in an eco-friendly manner. This chapter covers the basic ideas and historical development of green chemistry concerning the synthesis of nanoparticles. Critical analysis is given to several biological, chemical, and physical approaches to green synthesis, emphasizing the mechanisms of stabilization and reduction made possible by phytochemicals and biomolecules. This chapter further discusses important analytical methods for determining the physicochemical characteristics of green synthesized AuNPs and assuring their appropriateness for various applications. The benefits of green synthesis are highlighted, including improved biocompatibility, cost-effectiveness, and environmental benefits. The chapter also covers the extensive applications of AuNPs in biomedicine, environmental remediation, and industrial catalysis, demonstrating their versatile utility. Notwithstanding the promising perspectives, issues with scalability, repeatability, and regulatory barriers still exist. Future directions on how cutting-edge technology like machine learning and artificial intelligence can be used to optimize green synthesis processes are discussed. The potential of green synthesis to transform the production of nanoparticles and support technological innovation and sustainable development is highlighted in this chapter, to facilitate the adoption and application of green synthesis in nanotechnology by tackling existing constraints and investigating potential avenues for advancement.

Keywords
Green Synthesis, Gold Nanoparticles, Nanotechnology, Phytochemicals, Biocompatibility, Biomedical Applications, Green Chemistry

Published online 10/20/2024, 33 pages

Citation: Matthew Ogoe, Komal Janiyani, Harjeet Singh, Shivani R Pandya, Green synthesis of gold nanoparticles, Materials Research Foundations, Vol. 169, pp 365-397, 2024

DOI: https://doi.org/10.21741/9781644903261-14

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] Anu Mary Ealia S, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017 Nov;263:032019. https://doi.org/10.1088/1757-899X/263/3/032019
[2] Cai W. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008 Sep;Volume 1:17-32. https://doi.org/10.2147/NSA.S3788
[3] Mu L, Sprando RL. Application of Nanotechnology in Cosmetics. Pharm Res. 2010 Aug 21;27(8):1746-9. https://doi.org/10.1007/s11095-010-0139-1
[4] Mokhatab S, Fresky MA, Islam MR. Applications of Nanotechnology in Oil and Gas E&P. J Pet Technol. 2006 Apr 1;58(04):48-51. https://doi.org/10.2118/0406-0048-JPT
[5] Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2019 Aug;94:44-63. https://doi.org/10.1016/j.actbio.2019.05.022
[6] EL-Sheshtawy HS, El-Hosainy HM, Shoueir KR, El-Mehasseb IM, El-Kemary M. Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Appl Surf Sci. 2019 Feb;467-468:268-76. https://doi.org/10.1016/j.apsusc.2018.10.109
[7] González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surfaces B Biointerfaces. 2017 May;153:190-8. https://doi.org/10.1016/j.colsurfb.2017.02.020
[8] Vijayakumar S, Vaseeharan B, Malaikozhundan B, Gopi N, Ekambaram P, Pachaiappan R, et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog. 2017 Jan;102:173-83. https://doi.org/10.1016/j.micpath.2016.11.029
[9] Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem. 2015 Jan;21:1105-11. https://doi.org/10.1016/j.jiec.2014.05.021
[10] Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, et al. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm. 2017 Nov;533(1):156-68. https://doi.org/10.1016/j.ijpharm.2017.09.061
[11] Zhao X, Li F, Li Y, Wang H, Ren H, Chen J, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015 Apr;46:13-25. https://doi.org/10.1016/j.biomaterials.2014.12.028
[12] Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine Nanotechnology, Biol Med. 2013 May;9(4):474-91. https://doi.org/10.1016/j.nano.2012.11.010
[13] Yaduvanshi N, Jaiswal S, Tewari S, Shukla S, Wabaidur SM, Dwivedi J, et al. Palladium nanoparticles and their composites: Green synthesis and applications with special emphasis to organic transformations. Inorg Chem Commun. 2023 May;151:110600. https://doi.org/10.1016/j.inoche.2023.110600
[14] Pourzahedi L, Eckelman MJ. Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ Sci Nano. 2015;2(4):361-9. https://doi.org/10.1039/C5EN00075K
[15] Santo-Orihuela PL, Desimone MF, Catalano PN. Green Synthesis: A Land of Complex Nanostructures. Curr Pharm Biotechnol. 2023 Jan;24(1):3-22. https://doi.org/10.2174/1389201023666220512094533
[16] Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli , Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009 Feb;48(2):173-9. https://doi.org/10.1111/j.1472-765X.2008.02510.x
[17] Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surfaces B Biointerfaces. 2009 Nov;74(1):191-5. https://doi.org/10.1016/j.colsurfb.2009.07.016
[18] Bansal V, Rautaray D, Ahmad A, Sastry M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem. 2004;14(22):3303. https://doi.org/10.1039/b407904c
[19] Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials. 2016 Apr 14;6(4):71. https://doi.org/10.3390/nano6040071
[20] Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, et al. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci. 2020 Apr 3;21(7):2480. https://doi.org/10.3390/ijms21072480
[21] Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019 Nov;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011
[22] Hammami I, Alabdallah NM, jomaa A Al, kamoun M. Gold nanoparticles: Synthesis properties and applications. J King Saud Univ – Sci. 2021 Oct 1;33(7):101560. https://doi.org/10.1016/j.jksus.2021.101560
[23] Hassan AI, Saleh HM. Principles of Green Chemistry. Mater Horizons From Nat to Nanomater [Internet]. 2021 [cited 2024 Jun 22];15-32. Available from: https://link.springer.com/chapter/10.1007/978-981-33-6897-2_2 https://doi.org/10.1007/978-981-33-6897-2_2
[24] de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm J. 2019 Jan 1;27(1):1-8. https://doi.org/10.1016/j.jsps.2018.07.011
[25] Logeswari P, Silambarasan S, Abraham J. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci Iran. 2013 Jun 1;20(3):1049-54.
[26] Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials. 2022. https://doi.org/10.3390/nano12040673
[27] Amina SJ, Guo B.

A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle

. Int J Nanomedicine. 2020 Dec;Volume 15:9823-57. https://doi.org/10.2147/IJN.S279094
[28] Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275-300. https://doi.org/10.2147/IJN.S233789
[29] Lee KX, Shameli K, Miyake M, Ahmad Khairudin NBB, Mohamad SEB, Hara H, et al. Gold Nanoparticles Biosynthesis: A Simple Route for Control Size Using Waste Peel Extract. IEEE Trans Nanotechnol. 2017 Nov;16(6):954-7. https://doi.org/10.1109/TNANO.2017.2728600
[30] Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. 2019 Dec;12(8):2914-25. https://doi.org/10.1016/j.arabjc.2015.06.025
[31] Chen J, Li Y, Fang G, Cao Z, Shang Y, Alfarraj S, et al. Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem. 2021 Mar;14(3):103000. https://doi.org/10.1016/j.arabjc.2021.103000
[32] ElMitwalli OS, Barakat OA, Daoud RM, Akhtar S, Henari FZ. Green synthesis of gold nanoparticles using cinnamon bark extract, characterization, and fluorescence activity in Au/eosin Y assemblies. J Nanoparticle Res [Internet]. 2020 Oct 1 [cited 2024 Jun 24];22(10):1-9. Available from: https://link.springer.com/article/10.1007/s11051-020-04983-8 https://doi.org/10.1007/s11051-020-04983-8
[33] Stozhko NY, Bukharinova MA, Khamzina EI, Tarasov A V., Vidrevich MB, Brainina KZ. The Effect of the Antioxidant Activity of Plant Extracts on the Properties of Gold Nanoparticles. Nanomaterials. 2019 Nov 21;9(12):1655. https://doi.org/10.3390/nano9121655
[34] Karuppiah C, Palanisamy S, Chen SM, Emmanuel R, Muthupandi K, Prakash P. Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic. RSC Adv. 2015;5(21):16284-91. https://doi.org/10.1039/C4RA14988B
[35] Ganesh Kumar V, Dinesh Gokavarapu S, Rajeswari A, Stalin Dhas T, Karthick V, Kapadia Z, et al. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surfaces B Biointerfaces. 2011 Oct;87(1):159-63. https://doi.org/10.1016/j.colsurfb.2011.05.016
[36] Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates. Arab J Chem. 2012 Oct 1;5(4):431-7. https://doi.org/10.1016/j.arabjc.2010.11.011
[37] Philip D. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010 Nov;77(4):807-10. https://doi.org/10.1016/j.saa.2010.08.008
[38] Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF. Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett. 2016 Mar;166:110-2. https://doi.org/10.1016/j.matlet.2015.12.031
[39] Nagajyothi PC, Lee SE, An M, Lee KD. Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract. Bull Korean Chem Soc. 2012 Aug 20;33(8):2609-12. https://doi.org/10.5012/bkcs.2012.33.8.2609
[40] Yang N, WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014 Nov;134:67-70. https://doi.org/10.1016/j.matlet.2014.07.025
[41] Paul B, Bhuyan B, Dhar Purkayastha D, Dey M, Dhar SS. Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett. 2015 Jun;148:37-40. https://doi.org/10.1016/j.matlet.2015.02.054
[42] Oueslati MH, Ben Tahar L, Harrath AH. Synthesis of ultra-small gold nanoparticles by polyphenol extracted from Salvia officinalis and efficiency for catalytic reduction of p-nitrophenol and methylene blue. Green Chem Lett Rev. 2020 Jan 2;13(1):18-26. https://doi.org/10.1080/17518253.2019.1711202
[43] Akintelu SA, Yao B, Folorunso AS. Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon. 2021 Mar;7(3):e06591. https://doi.org/10.1016/j.heliyon.2021.e06591
[44] Nadaf NY, Kanase SS. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem. 2019 Dec;12(8):4806-14. https://doi.org/10.1016/j.arabjc.2016.09.020
[45] Kunoh T, Takeda M, Matsumoto S, Suzuki I, Takano M, Kunoh H, et al. Green Synthesis of Gold Nanoparticles Coupled with Nucleic Acid Oxidation. ACS Sustain Chem Eng. 2018 Jan 2;6(1):364-73. https://doi.org/10.1021/acssuschemeng.7b02610
[46] Lim K, Macazo FC, Scholes C, Chen H, Sumampong K, Minteer SD. Elucidating the Mechanism behind the Bionanomanufacturing of Gold Nanoparticles Using Bacillus subtilis. ACS Appl Bio Mater. 2020 Jun 15;3(6):3859-67. https://doi.org/10.1021/acsabm.0c00420
[47] Manjunath HM, Joshi CG, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus – Penicillium citrinum. IET Nanobiotechnology. 2017 Feb 14;11(1):40-4. https://doi.org/10.1049/iet-nbt.2016.0065
[48] Qu Y, Pei X, Shen W, Zhang X, Wang J, Zhang Z, et al. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants. Phys E Low-dimensional Syst Nanostructures. 2017 Apr;88:133-41. https://doi.org/10.1016/j.physe.2017.01.010
[49] Barabadi H, Honary S, Ali Mohammadi M, Ahmadpour E, Rahimi MT, Alizadeh A, et al. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res. 2017 Feb 4;24(6):5800-10. https://doi.org/10.1007/s11356-016-8291-8
[50] Sampath S, Madhavan Y, Muralidharan M, Sunderam V, Lawrance AV, Muthupandian S. A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol. 2022 Dec;360:92-109. https://doi.org/10.1016/j.jbiotec.2022.10.009
[51] Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci. 2023 Oct 20;24(20):15397. https://doi.org/10.3390/ijms242015397
[52] Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol. 2017 Sep;29:86-93. https://doi.org/10.1016/j.ejbt.2017.07.005
[53] Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Vol. 156, Advances in Colloid and Interface Science. 2010. p. 1-13. https://doi.org/10.1016/j.cis.2010.02.001
[54] Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, et al. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51 T isolated from Korean kimchi. Enzyme Microb Technol. 2016 Dec;95:85-93. https://doi.org/10.1016/j.enzmictec.2016.08.018
[55] Shen W, Qu Y, Pei X, Li S, You S, Wang J, et al. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J Hazard Mater. 2017 Jan;321:299-306. https://doi.org/10.1016/j.jhazmat.2016.07.051
[56] Lee KD, Nagajyothi PC, Sreekanth TVM, Park S. Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem. 2015 Jun;26:67-72. https://doi.org/10.1016/j.jiec.2014.11.016
[57] Narayanan KB, Sakthivel N. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surfaces A Physicochem Eng Asp. 2011 May;380(1-3):156-61. https://doi.org/10.1016/j.colsurfa.2011.02.042
[58] Barabadi H, Honary S, Ebrahimi P, Mohammadi MA, Alizadeh A, Naghibi F. Microbial mediated preparation, characterization and optimization of gold nanoparticles. Brazilian J Microbiol. 2014 Dec;45(4):1493-501. https://doi.org/10.1590/S1517-83822014000400046
[59] Roy S, Das TK, Maiti GP, Basu U. Microbial biosynthesis of nontoxic gold nanoparticles. Mater Sci Eng B. 2016 Jan;203:41-51. https://doi.org/10.1016/j.mseb.2015.10.008
[60] Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017 May;10:S3029-39. https://doi.org/10.1016/j.arabjc.2013.11.044
[61] Senapati S, Syed A, Moeez S, Kumar A, Ahmad A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett. 2012 Jul;79:116-8. https://doi.org/10.1016/j.matlet.2012.04.009
[62] Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng. 2014 Aug 14;37(8):1591-7. https://doi.org/10.1007/s00449-014-1131-7
[63] Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surfaces B Biointerfaces. 2007 May;57(1):97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010
[64] Annamalai J, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci. 2015 Jun 12;5(5):603-7. https://doi.org/10.1007/s13204-014-0353-y
[65] Hassaan MA. Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae – Review. Int J Atmos Ocean Sci [Internet]. 2018;2(1):10. Available from: https://www.researchgate.net/profile/Mohamed-Hassaan-2/publication/330317044_Green_Synthesis_of_Ag_and_Au_Nanoparticles_from_Micro_and_Macro_Algae_-_Review/links/5c5ec90292851c48a9c4eae7/Green-Synthesis-of-Ag-and-Au-Nanoparticles-from-Micro-and-Macro-Alga https://doi.org/10.11648/j.ijaos.20180201.12
[66] Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles [Internet]. Vol. 13, Green Chemistry Letters and Reviews. Taylor and Francis Ltd.; 2020. p. 59-81. Available from: https://www.tandfonline.com/doi/abs/10.1080/17518253.2020.1802517 https://doi.org/10.1080/17518253.2020.1802517
[67] Fang X, Wang Y, Wang Z, Jiang Z, Dong M. Microorganism assisted synthesized nanoparticles for catalytic applications. Energies. 2019;12(1). https://doi.org/10.3390/en12010190
[68] Abdelghany TM, Al-Rajhi AMH, Abboud MA Al, Alawlaqi MM, Magdah AG, Helmy EAM, et al. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review [Internet]. Vol. 8, BioNanoScience. Springer New York LLC; 2018. p. 5-16. Available from: https://link.springer.com/article/10.1007/s12668-017-0413-3 https://doi.org/10.1007/s12668-017-0413-3
[69] Olobayotan I, Akin-Osanaiye B. Biosynthesis of silver nanoparticles using baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiol. 2019;1(1A). https://doi.org/10.1099/acmi.ac2019.po0316
[70] Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K. Fabrication of virus metal hybrid nanomaterials: An ideal reference for bio semiconductor. Arab J Chem. 2020;13(1):2750-65. https://doi.org/10.1016/j.arabjc.2018.07.006
[71] Bhuyar P, Rahim MHA, Sundararaju S, Ramaraj R, Maniam GP, Govindan N. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci. 2020;9(1). https://doi.org/10.1186/s43088-019-0031-y
[72] Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, et al. Endophytic streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics [Internet]. 2020;9(10):1-18. Available from: https://www.mdpi.com/2079-6382/9/10/641/htm https://doi.org/10.3390/antibiotics9100641
[73] Hamedi S, Shojaosadati SA. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron. 2019;171:172-80. https://doi.org/10.1016/j.poly.2019.07.010
[74] Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Vol. 9, Micro and Nano Systems Letters. Society of Micro and Nano Systems; 2021. https://doi.org/10.1186/s40486-021-00131-6
[75] Khan SA, Shahid S, Lee CS. Green synthesis of gold and silver nanoparticles using leaf extract of clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules [Internet]. 2020;10(6). Available from: https://www.mdpi.com/2218-273X/10/6/835 https://doi.org/10.3390/biom10060835
[76] Zaeem A, Drouet S, Anjum S, Khurshid R, Younas M, Blondeau JP, et al. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. In vitro cultures: A comparative analysis. Biomolecules [Internet]. 2020;10(6):1-16. Available from: https://www.mdpi.com/2218-273X/10/6/918 https://doi.org/10.3390/biom10060918
[77] Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules [Internet]. 2020;10(1). Available from: https://www.mdpi.com/2218-273X/10/1/89 https://doi.org/10.3390/biom10010089
[78] Noah N. Green synthesis: Characterization and application of silver and gold nanoparticles. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; 2018. p. 111-35. https://doi.org/10.1016/B978-0-08-102579-6.00006-X
[79] Mickymaray S. One-step synthesis of silver nanoparticles using saudi arabian desert seasonal plant Sisymbrium irio and antibacterial activity against multidrug-resistant bacterial strains. Biomolecules [Internet]. 2019;9(11). Available from: https://www.mdpi.com/2218-273X/9/11/662 https://doi.org/10.3390/biom9110662
[80] Khan SA, Shahid S, Shahid B, Fatima U, Abbasi SA. Green synthesis of MNO nanoparticles using abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities. Biomolecules [Internet]. 2020;10(5). Available from: https://www.mdpi.com/2218-273X/10/5/785 https://doi.org/10.3390/biom10050785
[81] Alshehri AA, Malik MA. Phytomediated photo-induced green synthesis of silver nanoparticles using Matricaria chamomilla L. and its catalytic activity against rhodamine B. Biomolecules [Internet]. 2020;10(12):1-24. Available from: https://www.mdpi.com/2218-273X/10/12/1604 https://doi.org/10.3390/biom10121604
[82] Singh R, Hano C, Nath G, Sharma B. Green biosynthesis of silver nanoparticles using leaf extract of carissa carandas l. And their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules [Internet]. 2021;11(2):1-11. Available from: https://www.mdpi.com/2218-273X/11/2/299 https://doi.org/10.3390/biom11020299
[83] Ahmad H, Venugopal K, Rajagopal K, Britto S De, Nandini B, Pushpalatha HG, et al. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules [Internet]. 2020;10(3). Available from: https://www.mdpi.com/2218-273X/10/3/425 https://doi.org/10.3390/biom10030425
[84] Perveen K, Husain FM, Qais FA, Khan A, Razak S, Afsar T, et al. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of trachyspermum ammi: Ros mediated biofilm inhibition and anticancer activity. Biomolecules. 2021;11(2):1-16. https://doi.org/10.3390/biom11020197
[85] Ansari MA, Murali M, Prasad D, Alzohairy MA, Almatroudi A, Alomary MN, et al. Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomolecules [Internet]. 2020;10(2). Available from: https://www.mdpi.com/2218-273X/10/2/336 https://doi.org/10.3390/biom10020336
[86] Viana RLS, Fidelis GP, Medeiros MJC, Morgano MA, Alves MGCF, Passero LFD, et al. Green synthesis of antileishmanial and antifungal silver nanoparticles using corn cob xylan as a reducing and stabilizing agent. Biomolecules [Internet]. 2020;10(9):1-21. Available from: https://www.mdpi.com/2218-273X/10/9/1235 https://doi.org/10.3390/biom10091235
[87] Prasad KS, Prasad SK, Ansari MA, Alzohairy MA, Alomary MN, Alyahya S, et al. Tumoricidal and bactericidal properties of znonps synthesized using cassia auriculata leaf extract. Biomolecules [Internet]. 2020;10(7):1-14. Available from: https://www.mdpi.com/2218-273X/10/7/982 https://doi.org/10.3390/biom10070982
[88] Geraldes AN, da Silva AA, Leal J, Estrada-Villegas GM, Lincopan N, Katti K V, et al. Green Nanotechnology from Plant Extracts: Synthesis and Characterization of Gold Nanoparticles. Adv Nanoparticles [Internet]. 2016;05(03):176-85. Available from: http://info.submit4journal.com/id/eprint/1905/ https://doi.org/10.4236/anp.2016.53019
[89] Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, et al. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostructure Chem. 2013;3(1). https://doi.org/10.1186/2193-8865-3-44
[90] Moosavy MH, de la Guardia M, Mokhtarzadeh A, Khatibi SA, Hosseinzadeh N, Hajipour N. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Sci Rep [Internet]. 2023;13(1). Available from: https://www.nature.com/articles/s41598-023-33632-y https://doi.org/10.1038/s41598-023-33632-y
[91] Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci. 2020;27(2):706-12. https://doi.org/10.1016/j.sjbs.2019.12.026
[92] Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine [Internet]. 2011;6:1265-78. Available from: https://www.tandfonline.com/doi/abs/10.2147/IJN.S18347 https://doi.org/10.2147/IJN.S18347
[93] Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod [Internet]. 2013;45:423-9. Available from: https://www.sciencedirect.com/science/article/pii/S092666901200653X https://doi.org/10.1016/j.indcrop.2012.12.019
[94] Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-934. https://doi.org/10.1039/C8NR02278J
[95] Awad MA, Eisa NE, Virk P, Hendi AA, Ortashi KMOO, Mahgoub AASA, et al. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater Lett. 2019;256. https://doi.org/10.1016/j.matlet.2019.126608
[96] Rajeshkumar S, Bharath L V. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity [Internet]. Vol. 273, Chemico-Biological Interactions. 2017. p. 219-27. Available from: https://www.sciencedirect.com/science/article/pii/S0009279717304799 https://doi.org/10.1016/j.cbi.2017.06.019
[97] Smith DJ. Characterization of Nanomaterials Using Transmission Electron Microscopy. In: Nanocharacterisation. The Royal Society of Chemistry; 2015. p. 1-29. https://doi.org/10.1039/9781782621867-00001
[98] Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017; https://doi.org/10.1016/j.arabjc.2013.11.044
[99] Nadhe SB, Wadhwani SA, Singh R, Chopade BA. Green Synthesis of AuNPs by Acinetobacter sp. GWRVA25: Optimization, Characterization, and Its Antioxidant Activity. Front Chem. 2020; https://doi.org/10.3389/fchem.2020.00474
[100] Jamil S, Dastagir G, Foudah AI, Alqarni MH, Yusufoglu HS, Alkreathy HM, et al. Carduus edelbergii Rech. f. Mediated Fabrication of Gold Nanoparticles; Characterization and Evaluation of Antimicrobial, Antioxidant and Antidiabetic Potency of the Synthesized AuNPs. Molecules. 2022 Oct 7;27(19). https://doi.org/10.3390/molecules27196669
[101] Dobrucka R, Dlugaszewska J, Kaczmarek M. Antimicrobial and cytostatic activity of biosynthesized nanogold prepared using fruit extract of Ribes nigrum. Arab J Chem. 2019;12(8):3902-10. https://doi.org/10.1016/j.arabjc.2016.02.009
[102] MR KP. Applications of the Green Synthesized Gold Nanoparticles-Antimicrobial Activity, Water Purification System and Drug Delivery System. Nanosci Technol Open Access [Internet]. 2015;2(2):1-4. Available from: https://pdfs.semanticscholar.org/538a/37615f28939d41021402b53c95a4e27095ad.pdf https://doi.org/10.15226/2374-8141/2/2/00126
[103] Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine [Internet]. 2016;11:3691-701. Available from: https://www.tandfonline.com/doi/abs/10.2147/IJN.S97181 https://doi.org/10.2147/IJN.S97181
[104] Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C [Internet]. 2015;53:298-309. Available from: https://www.sciencedirect.com/science/article/pii/S0928493115300497 https://doi.org/10.1016/j.msec.2015.04.048
[105] Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013;4(4-5):91-8. https://doi.org/10.1007/s12645-013-0040-9
[106] Santhosh PB, Genova J, Chamati H. Review Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach [Internet]. Vol. 4, Chemistry (Switzerland). Multidisciplinary Digital Publishing Institute; 2022. p. 345-69. Available from: https://www.mdpi.com/2624-8549/4/2/26/htm https://doi.org/10.3390/chemistry4020026
[107] Ibrahim NA, Eid BM, Abdel-Aziz MS. Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates. Appl Surf Sci [Internet]. 2016;389:118-25. Available from: https://www.sciencedirect.com/science/article/pii/S0169433216315136 https://doi.org/10.1016/j.apsusc.2016.07.077
[108] Ganesan RM, Prabu HG. Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab J Chem [Internet]. 2019;12(8):2166-74. Available from: https://www.sciencedirect.com/science/article/pii/S1878535214003682 https://doi.org/10.1016/j.arabjc.2014.12.017
[109] Velmurugan P, Shim J, Bang KS, Oh BT. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. J Photochem Photobiol B Biol [Internet]. 2016;160:102-9. Available from: https://www.sciencedirect.com/science/article/pii/S1011134416300823 https://doi.org/10.1016/j.jphotobiol.2016.03.051
[110] Dang H, Fawcett D, Poinern GEJ. Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int J Res Med Sci [Internet]. 2019;7(4):1171. Available from: https://researchportal.murdoch.edu.au/view/pdfCoverPage?instCode=61MUN_INST&filePid=13137018030007891&download=true https://doi.org/10.18203/2320-6012.ijrms20191320
[111] Jiang M, Li S, Ming P, Guo Y, Yuan L, Jiang X, et al. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int J Biol Macromol. 2023;237. https://doi.org/10.1016/j.ijbiomac.2023.123944
[112] Awad NS, Salkho NM, Abuwatfa WH, Paul V, AlSawaftah NM, Husseini GA. Tumor vasculature vs tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano. 2023;11. https://doi.org/10.1016/j.onano.2023.100136
[113] Ma X, Lee C, Zhang T, Cai J, Wang H, Jiang F, et al. Correction to: Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer (Journal of Nanobiotechnology, (2021), 19, 1, (284), 10.1186/s12951-021-01018-9). Vol. 20, Journal of Nanobiotechnology. BioMed Central Ltd; 2022. https://doi.org/10.1186/s12951-021-01184-w
[114] Botteon CEA, Silva LB, Ccana-Ccapatinta G V, Silva TS, Ambrosio SR, Veneziani RCS, et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep. 2021;11(1). https://doi.org/10.1038/s41598-021-81281-w
[115] Doghish AS, Hashem AH, Shehabeldine AM, Sallam AAM, El-Sayyad GS, Salem SS. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. J Drug Deliv Sci Technol. 2022;77. https://doi.org/10.1016/j.jddst.2022.103874
[116] Pang YX, Li X, Zhang X, Yeoh JX, Wong C, Manickam S, et al. The synthesis of carbon-based quantum dots: A supercritical fluid approach and perspective. Vol. 27, Materials Today Physics. Elsevier Ltd; 2022. https://doi.org/10.1016/j.mtphys.2022.100752
[117] Malik N, Arfin T, Khan AU. Graphene nanomaterials: Chemistry and pharmaceutical perspectives. In: Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. p. 373-402. https://doi.org/10.1016/B978-0-12-816505-8.00002-3
[118] Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021 May;3(10):2679-98. https://doi.org/10.1039/D0NA00961J
[119] Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem – An Asian J. 2021 Apr;16(7):720-42. https://doi.org/10.1002/asia.202001202
[120] Wu Y, Ali MRK, Chen K, Fang N, El-Sayed MA. Gold nanoparticles in biological optical imaging. Nano Today. 2019 Feb;24:120-40. https://doi.org/10.1016/j.nantod.2018.12.006
[121] Sargazi S, Laraib U, Er S, Rahdar A, Hassanisaadi M, Zafar MN, et al. Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Vol. 12, Nanomaterials. MDPI; 2022. https://doi.org/10.3390/nano12071102
[122] Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Vol. 26, Molecules. MDPI; 2021. https://doi.org/10.3390/molecules26216389
[123] Kotcherlakota R, Nimushakavi S, Roy A, Yadavalli HC, Mukherjee S, Haque S, et al. Biosynthesized Gold Nanoparticles: In Vivo Study of Near-Infrared Fluorescence (NIR)-Based Bio-imaging and Cell Labeling Applications. ACS Biomater Sci Eng. 2019 Oct;5(10):5439-52. https://doi.org/10.1021/acsbiomaterials.9b00721
[124] Ateeq M, Shah MR, ul Ain N, Bano S, Anis I, Lubna, et al. Green synthesis and molecular recognition ability of patuletin coated gold nanoparticles. Biosens Bioelectron [Internet]. 2015;63:499-505. Available from: https://www.sciencedirect.com/science/article/pii/S0956566314005776 https://doi.org/10.1016/j.bios.2014.07.076
[125] Karthik R, Chen SM, Elangovan A, Muthukrishnan P, Shanmugam R, Lou BS. Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity and DFT studies. J Colloid Interface Sci [Internet]. 2016;468:163-75. Available from: https://www.sciencedirect.com/science/article/pii/S0021979716300467 https://doi.org/10.1016/j.jcis.2016.01.046
[126] Hegedus LL, Mccabe RW. Catalyst Poisoning. Catal Rev [Internet]. 1981;23(3):377-476. Available from: https://books.google.com/books/about/Catalyst_Poisoning.html?id=RbVTAAAAMAAJ https://doi.org/10.1080/03602458108079641
[127] Qu Y, Shen W, Pei X, Ma F, You S, Li S, et al. Biosynthesis of gold nanoparticles by Trichoderma sp. WL-Go for azo dyes decolorization. J Environ Sci (China) [Internet]. 2017;56:79-86. Available from: https://www.sciencedirect.com/science/article/pii/S1001074216307628 https://doi.org/10.1016/j.jes.2016.09.007
[128] Chairam S, Konkamdee W, Parakhun R. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction Starch-supported gold nanoparticles in 4-nitrophenol reduction. J Saudi Chem Soc. 2017;21(6):656-63. https://doi.org/10.1016/j.jscs.2015.11.001