Green synthesis and applications of ceria-based nanomaterials

$40.00

Green synthesis and applications of ceria-based nanomaterials

Usman Lawal Usman, Nakshatra Bahadur Singh, Narendra P. Singh

In recent years, there has been a growing interest in developing environmentally and sustainable methods for the synthesis of nanomaterials (NMs). Among various NMs, ceria-based NMs have gained significant attention due to their unique properties and diverse applications. This chapter provides a comprehensive overview of the green synthesis approaches employed for the fabrication of ceria-based NMs and their subsequent applications. The chapter begins with an introduction to ceria-based NMs, highlighting their exceptional physicochemical properties such as high surface area, redox capabilities, and oxygen storage capacity. Subsequently, it delves into the concept of green synthesis, emphasizing the significance of using environmentally benign routes for NMs fabrication. Various green synthesis methods, including biological, template-mediated, and microwave-assisted techniques, are discussed in detail, highlighting their advantages, limitations, and applicability to ceria-based NMs. Furthermore, the chapter explores the wide-ranging applications of ceria-based NMs in different fields, such as catalysis, energy storage and conversion, environmental remediation, and biomedical applications. Specific examples and case studies are presented to illustrate the effectiveness of ceria-based NMs in these applications. Additionally, the chapter discusses the potential challenges and future perspectives associated with the green synthesis and applications of ceria-based NMs, including scalability, stability, and toxicity considerations. By adopting sustainable and environmentally friendly approaches, the synthesis and applications of ceria-based NMs can contribute to the development of cleaner and more efficient technologies for a sustainable future.

Keywords
Cerium-based NMs, Green Synthesis, Adsorbents, Biomedical, Environmental Mitigation

Published online 10/20/2024, 34 pages

Citation: Usman Lawal Usman, Nakshatra Bahadur Singh, Narendra P. Singh, Green synthesis and applications of ceria-based nanomaterials, Materials Research Foundations, Vol. 169, pp 331-364, 2024

DOI: https://doi.org/10.21741/9781644903261-13

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] F.D. Guerra, M.F.Attia, D.CWhitehead, F. Alexis, Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 23(2018)1760. https://doi.org/10.3390/molecules23071760
[2] S.F.Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, A.B.M.S. Islam, H.C.Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res. 204(2022)111967. doi: 10.1016/j.envres.2021.111967. Epub 2021 Aug 25. PMID: 34450159.
[3] U.L. Usman, N. B. Singh, B.K. Allam, S. Banerjee, Biogenic Synthesis of Zinc Oxide/Chitosan Nanocomposite using Callistemon citrinus (Bottle Brush) for Photocatalytic Degradation of Methylene Blue. Macromol Symp. Macromol. Symp. 407(2023) 2100357: https://doi.org/10.1002/masy.202100357
[4] K.R.B. Singh, V.Nayak, T.Sarkar, R.P.Singh. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances. RSC Adv., 10(2020) 27194-27214. https://doi.org/10.1039/D0RA04736H.
[5] R.G. Chaudhary, P.B. Chouke, R.Bagade, A.K. Potbhare, Molecular docking and antioxidant activity of Cleome simplicifolia assisted synthesis of cerium oxide nanoparticles, Mater. Today: Procs, 2020, 29 (4), 1085-1090: doi.org/10.1016/j.matpr.2020.05.062.
[6] Usman Lawal Usman, Nakshatra Bahadur Singh, Bharat Kumar Allam, Sushmita Banerjee, Plant extract mediated synthesis of Fe3O4-chitosan composite for the removal of lead ions from aqueous solution. Mater. Today: Proc 60 (2022) 1140-1149; https://doi.org/10.1016/j.matpr.2022.02.311
[7] P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, R. Sharma, R.G. Chaudhary, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Mater. Today Adv. 16(2022) 100314. https://doi.org/10.1016/j.mtadv.2022.100314.
[8] F. Khan, M. Shariq, M. Asif, M. A. Siddiqui, P. Malan, F. Ahmad. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials (Basel). 12(4)(2022)673. doi: 10.3390/nano12040673. PMID: 35215000; PMCID: PMC8878231.
[9] S. Ghosh , R. Ahmad, K. Banerjee, M. F. AlAjmi, S. Rahman, Mechanistic Aspects of Microbe-Mediated Nanoparticle Synthesis. Frontiers in Microbiology. Front. Microbiol. 12(2021)638068. https://doi.org/10.3389/fmicb.2021.638068
[10] Francisco Rodríguez-Félix, Abril Zoraida Graciano-Verdugo, María Jesús Moreno-Vásquez, Irlanda Lagarda-Díaz, Carlos Gregorio Barreras-Urbina, Lorena Armenta-Villegas, Alberto Olguín-Moreno, José Agustín Tapia-Hernández, “Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri-Food Waste Extracts and Their Applications in Health”, Journal of Nanomaterials, vol. 2022, Article ID 8874003, 37 pages, 2022. https://doi.org/10.1155/2022/8874003
[11] A. Jain, Algae-mediated synthesis of biogenic nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology. Adv. Nat. Sci: Nanosci. Nanotechnol. 13(4)(2022) 043001. DOI 10.1088/2043-6262/ac996a.
[12] M. S. Samuel, M. Ravikumar, J. A. John, E. Selvarajan, H. Patel, P. S..Chander, J. Soundarya, ,S.Vuppala, R.Balaji, N. Chandrasekar, A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts 12(2022), 459. https://doi.org/10.3390/catal12050459
[13] Dmitry Bokov, Abduladheem Turki Jalil, Supat Chupradit, Wanich Suksatan, Mohammad Javed Ansari, Iman H. Shewael, Gabdrakhman H. Valiev, Ehsan Kianfar, “Nanomaterial by Sol-Gel Method: Synthesis and Application”, Advances in Materials Science and Engineering, (2021), 5102014, 21 pages https://doi.org/10.1155/2021/5102014
[14] M. Nyoka, Y. E. Choonara, P. Kumar, P.P.D. Kondiah, V. Pillay, Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications. Nanomaterials (Basel). 10(2) (2020) 242. doi: 10.3390/nano10020242. PMID: 32013189; PMCID: PMC7075153.
[15] A.K. Potbhare, R.G. Chaudhary, V. Sonkusare, A. Mondal, A.R. Rai, H.D. Juneja. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus Reticulatus/Conyza Bonariensis and its antioxidant/antibacterial assays, Materials Science & Engineering C, 2019, 99, 783-793. https://doi.org/10.1016/j.msec.2019.02.010.
[16] Nayak J, Devi C, Vidyapeeth L. Microwave assisted synthesis: a green chemistry approach. Int. Res. J. Pharm. Appl. Sci. 2016;3(5):278-285.
[17] Christos Vaitsis, Maria Mechili, Nikolaos Argirusis, Eirini Kanellou, Pavlos K. Pandis, Georgia Sourkouni, Antonis Zorpas and Christos Argirusis, Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications. In: Nanotechnology and the Environment. (2020). DOI: 10.5772/intechopen.92802
[18] S. Arndt , D. Weis, K. Donsbach, S. R. Waldvogel, The “Green” Electrochemical Synthesis of Periodate. Angew Chemie – Int Ed. 59, (2020) 7969-8300 https://doi.org/10.1002/anie.202002717
[19] Mohamed Madani , Shimaa Hosny , Dalal Mohamed Alshangiti , Norhan Nady , Sheikha A. Alkhursani , Huda Alkhaldi , Samera Ali Al-Gahtany , Mohamed Mohamady Ghobashy, Ghalia A. Gabe, “Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes” Nanotechnology Reviews, 11(1) (2022) 731-759. https://doi.org/10.1515/ntrev-2022-0034
[20] F. S. Irwansyah, A. R. Noviyanti, D. R. Eddy, R. Risdiana, Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 27(2022)5586. https://doi.org/10.3390/molecules27175586.
[21] . Mondal, M.S. Umekar, G.S. Bhusari, P.B. Chouke, T. Lambat, S. Mondal, R.G. Chaudhary, S.H. Mahmood, Biogenic synthesis of metal/metal oxide nanostructured materials, Curr. Pharm. Biotechnol. 22 (13) 2021, 1782-1793. https://doi.org/10.2174/1389201022666210111122911.
[22] Palaniyandi Velusamy, Govindarajan Venkat Kumar, Venkadapathi Jeyanthi Jayabrata Das, and Raman Pachaiappan, Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Toxicol Res. 32(2016) 95–102, https://doi.org/10.5487/TR.2016.32.2.095
[23. ] R. G. Chaudhary, N. B. Singh, A. R. Daddemal-Chaudhary and Rohit Sharma, Review on Agrobiowaste-mediated nanohybrids for removal of toxic heavy metals from wastewater, ChemistrySelect, 2024, 9(4) e202304230. https://doi.org/10.1002/slct.202304230.
[24] I. V. Machado, J. R. N. dos Santos, M. A. P. Januario, A.G. Corrêa, Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrasonics Sonochemistry 78 (2021) 105704. https://doi.org/10.1016/j.ultsonch.2021.105704.
[25] P. Lisbona, S. Pascual, V. Pérez. Waste to energy: Trends and perspectives, Chemical Engineering Journal Advances 14 (2023) 100494. https://doi.org/10.1016/j.ceja.2023.100494.
[26] S. Bauer, M. Wagner, Possibilities and Challenges of Wastewater Reuse—Planning Aspects and Realized Examples. Water (Switzerland). Water 14(2022) 1619. https://doi.org/10.3390/w14101619
[27] Caroline Visentin Adan William da Silva Trentin, Adeli Beatriz Braun, Antônio Thomé, Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation. Journal of Cleaner Production 231 (2019) 307e319. https://doi.org/10.1016/j.jclepro.2019.05.236
[28] L. Soltys, O. Olkhovyy, T.Tatarchuk, M. Naushad, Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials. Magnetochemistry.7(11)(2021)145.https://doi.org/10.3390/magnetochemistry7110145.
[29] Neil Osterwalder, Christian Capello, Konrad Hungerbu¨hler, Wendelin J. Stark, Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis?. J Nanopart Res 8(2006) 1–9, https://doi.org/10.1007/s11051-005-8384-7.
[30] M. S. Umekar, G. S. Bhusari, T. Bhoyar, V. Devthade, B. P. Kapgate, A. P. Potbhare, R. G. Chaudhary and A. A. Abdala, Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants, Current Nanoscience, 19 (2) (2023), 148-169. https://doi.org/10.2174/1573413718666220127123935.
[31] M. Branca, M.Ibrahim, D. Ciuculescu, K. Philippot, C. Amiens, Water Transfer of Hydrophobic Nanoparticles: Principles and Methods. In Handbook of Nanoparticles; Aliofkhazraei M., Ed., 1st; Springer: New York, (2015)1279–1311. 10.1007/978-3-319-15338-4_29
[32] Shuaixuan Ying, Zhenru Guan, Polycarp C. Ofoegbu , Preston Clubb , Cyren Rico, Feng He, Jie Hong, Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation. 26 (2022) 102336. https://doi.org/10.1016/j.eti.2022.102336
[33] Mohammadreza Khalaj, Mohammadreza Kamali, Tejraj M Aminabhavi M Elisabete V Costa, Raf Dewil, Lise Appels, Isabel Capel, Sustainability insights into the synthesis of engineered nanomaterials – Problem formulation and considerations. Environ Res. 220(2023)115249. doi: 10.1016/j.envres.2023.115249. Epub 2023 Jan 9. PMID: 36632884.
[34] E. R. Sadiku, O. Agboola , I. D. Ibrahim A. Babu Reddy, M. Bandla , P. N. Mabalane, et al. Synthesis of Bio-Based and Eco-Friendly Nanomaterials for Medical and BioMedical Applications. In: Materials Horizons: From Nature to Nanomaterials Green Biopolymers and their Nanocomposites, (2019) 283-312. https://doi.org/10.1007/978-981-13-8063-1_13.
[35] X.C.Jiang, W. M. Chen, C. Y. Chen, S. X. Xiong, A. B. Yu, Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach. Nanoscale Res Lett. 6(1)(2011)32. doi: 10.1007/s11671-010-9780-1. Epub 2010 Sep 23. PMID: 27502655; PMCID: PMC3211407.
[36] N.T.K. Thanh, N. Maclean S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews. 114(2014)7610−7630
[37] Nan-Chun Wu, Er-Wei Shi, Yan-Qing Zheng, Wen-Jun Li, Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders. J Am Ceram Soc. 85(10)(2005)2462 – 2468. DOI: 10.1111/j.1151-2916.2002.tb00481.x
[38] Al-Hada NM, Md. Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM,
[Alhawsawi AM, Baqer AA, Liu J, Xu S, et al. The Effect of Precursor Concentration on the Particle Size, Crystal Size, and Optical Energy Gap of CexSn1−xO2 Nanofabrication.Nanomaterials. (8)(2021)2143.https://doi.org/10.3390/nano11082143
[39] D. Rodríguez-Padrón, A. M. Puente-Santiago, A.M. Balu, M. J.Muñoz-Batista , R. Luque, Environmental Catalysis: Present and Future. ChemCatChem. 2019 https://doi.org/10.1002/cctc.201801248.
[40.] Phebe Asantewaa Owusu and Samuel Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Engineering 3(2016)1167990DOI: 10.1080/23311916.2016.1167990.
[41] W.] Chen, Z. Huang, K. J. Chua, Sustainable energy recovery from thermal processes: a review. Energ Sustain Soc 12(2022)46; https://doi.org/10.1186/s13705-022-00372-2.
[42] L. Berta, N.A. Coman, A. Rusu, C. Tanase, A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. Materials (Basel). 14(24)(2021)7677; doi: 10.3390/ma14247677. PMID: 34947271; PMCID: PMC8705710.
[43] A. Altemimi , N. Lakhssassi, A. Baharlouei, D.G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel). 6(4)(2017)42,. doi: 10.3390/plants6040042. PMID: 28937585; PMCID: PMC5750618.
[44] J.O. Adeyemi, A.O. Oriola, D. C. Onwudiwe, A. O. Oyedeji, Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 12(2022) 627. https://doi.org/10.3390/biom12050627
[45] P. Bhilkar, A. Bodhne, S. Yerpude, R. Madankar, S. Somkuwar, A. Chaudhary, A. Lambat, M. Desimone, R. Sharma, R. Chaudhary, Phyto-derived Metal Nanoparticles: Prominent Tool for Biomedical Applications, OpenNano, 14 (2023) 100192. https://doi.org/10.1016/j.onano.2023.100192.
[46] P. K. Dikshit, J. Kumar, A. K. Das, S. Sadhu, S. Sharma, S. Singh, P. K. Gupta, B. S. Kim, Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 11(2021) 902. https://doi.org/10.3390/catal11080902
[47] M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, G.E.J. Poinern , Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel). 8(11)2015)7278-7308. doi: 10.3390/ma8115377. PMID: 28793638; PMCID: PMC5458933.
[48] M. Pérez-Page, E. Yu, J. Li, M. Rahman, D. M. Dryden, R. Vidu, P. Stroeve, Template-based syntheses for shape controlled nanostructures. Adv Colloid Interface Sci. 234(2016)51-79. doi: 10.1016/j.cis.2016.04.001. Epub 2016 Apr 20. PMID: 27154387.
[49] S. S. Mohtar, F. Aziz, A. F. Ismail, N. S. Sambudi, H. Abdullah , A. N. Rosli , B. Ohtani . Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts. 11(10)(2021)1160. https://doi.org/10.3390/catal11101160
[50] J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samaddar, P. Kumar ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(2018) 84 ; https://doi.org/10.1186/s12951-018-0408-4
[51] A. Bandyopadhyay , B. J. Sarkar, S. Sutradhar, J. Mandal, P. K. Chakrabarti , Synthesis, structural characterization, and studies of magnetic and dielectric properties of Gd3+ doped cerium oxide (Ce0.90Gd0.10O2−δ). J Alloys Compd. 865(2021) 158838, https://doi.org/10.1016/j.jallcom.2021.158838.
[52] N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20,(2022)262 ; https://doi.org/10.1186/s12951-022-01477-8
[53] Nitin Kumar Sharma, Jyotsna Vishwakarma, Summi Rai, Taghrid S Alomar, Najla AlMasoud, Ajaya Bhattarai, Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega. 7(31)(2022)27004-27020. doi: 10.1021/acsomega.2c01400. PMID: 35967040; PMCID: PMC9366950.
[54] Karolina Wieszczycka, Katarzyna Staszak, Marta J. Woz´niak-Budych, Jagoda Litowczenko, Barbara M. Maciejewska , Stefan Jurga., Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews. 436(2021)213846 https://doi.org/10.1016/j.ccr.2021.213846.
[55] F. Charbgoo, M. B. Ahmad, M. Darroudi Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine.12(2017)1401-1413; doi: 10.2147/IJN.S124855. PMID: 28260887; PMCID: PMC5325136.
[56] X. Y. Yang, L. H. Chen, Y. Li, J. C. Rooke, C. Sanchez, B. L. Su, Hierarchically porous materials: Synthesis strategies and structure design. Chemical Society Reviews. Chem. Soc. Rev., 46(2017) 481-558. https://doi.org/10.1039/C6CS00829A.
[57] N.B. Singh, R.G. Chaudhary, M.F. Desimone, A. Agrawal, S.K. Shukla, Green synthesized nanomaterials for safe technology in sustainable agriculture, Current Pharmaceutical Biotechnology, 24 (2023) 61-85. https://doi.org/10.2174/1389201023666220608113924.
[58] M.A Neouze, U Schubert. Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatsh Chem 139(2008) 183–195; https://doi.org/10.1007/s00706-007-0775-2
[59] D Sharma, S Kanchi, K Bisetty. Biogenic synthesis of nanoparticles: A review. Arabian journal of Chemistry 12(2019) 3576–3600. http://dx.doi.org/10.1016/j.arabjc.2015.11.002.
[60] S.M. Amini, A Akbari. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol. 13(8)(2019) 771-777. doi: 10.1049/iet-nbt.2018.5386. PMID: 31625516; PMCID: PMC8676617.
[61] J.B. Ricardo, Pinto, Carlos D Luís, Marques A.A.P. Paula, A.J. Silvestre, C.S. Freire. An overview of luminescent bio-based composites. Journal of Applied Polymer Science. Appl. Polym. Sci. 131(2014)41169; DOI: 10.1002/app.41169.
[62] T Benvegnu, D Plusquellec, L Lemiègre. Surfactants from renewable sources: Synthesis and applications. In: Monomers, Polymers and Composites from Renewable Resources. 2008. DOI: 10.1016/B978-0-08-045316-3.00007-7.
[63] U.V. Gaikwad, AR. Golhar, NK Choudhari, AR. Chaudhari. Structural characterization techniques of materials. In: AIP Conference Proceedings. 2104, 020027 (2019); https://doi.org/10.1063/1.5100395 2104.
[64] Umekar, M. S., Bhusari, G. S., Potbhare, A. K., Mondal, A., Kapgate, B. P., Desimone, M. F., & Chaudhary, R. G. (2021). Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotechnol., 22(13),1759-1781. http://dx.doi.org/10.2174/1389201022666201231115826
[65] J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials (Basel).9(3)( 2019)424. doi: 10.3390/nano9030424. PMID: 30871096; PMCID: PMC6473982.
[66] K. Kowsuki, R . Nirmala, Y.H. Ra, R. Navamathavan, Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. Results Chem. 5(1)(2023)100877. DOI: 10.1016/j.rechem.2023.100877
[67] M. Pavel, C. Anastasescu, R.N. State, A .Vasile, F. Papa, I. Balint. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 13(2023,) 1380. https://doi.org/10.3390/catal13020380
[68] P.C. Ray, H. Yu, P. P. Fu, Toxicity and environmental risks of nanomaterials: challenges and future ] needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 1(2009)1-35. doi: ] 10.1080/10590500802708267. PMID: 19204862; PMCID: PMC2844666.
[69] Jayanta Kumar Patra, Gitishree Das, Leonardo Fernande Fraceto, Estefania Vangelie Ramos Campos, Maria del Pilar Rodriguez-Torres, Laura Susana Acosta-Torres, Luis Armando Diaz-Torres, Renato ] Grillo, Mallappa Kumara Swamy, Shivesh Sharma Solomon Habtemariam, Han-Seung Shin, Nano ] based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8.
[70.] A. Farooq, S. Sabah, S. Dhou, N. Alsawaftah, G. Husseini. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. Nanomaterials (Basel). 12(3)(2022)393. doi: 10.3390/nano12030393. PMID: 35159738; PMCID: PMC8840344.
[71] Saman Sargazi, Iqra Fatima, Maria Hassan Kiani, Vahideh Mohammadzadeh, Rabia Arshad, Muhammad Bilal , Abbas Rahdar, Ana M. Díez-Pascual, Razieh Behzadmehr, Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. International Journal of Biological Macromolecules. 206(2022)115-147 https://doi.org/10.1016/j.ijbiomac.2022.02.137.
[72] X. Zheng, P. Zhang, Z. Fu, S. Meng, L. Dai, H. Yang, Applications of nanomaterials in tissue engineering. RSC Advances. RSC Adv. 11(2021)19041-19058. https://doi.org/10.1039/D1RA01849C.
[73] S. Pandey,Advance Nanomaterials for Biosensors. Biosensors 12(2022) 219. https://doi.org/10.3390/bios12040219.