Recent advancements in supercapacitors of bismuth oxide nanomaterials
A.P. Angre, P.S. Gaikar, P.A. Patil, R.G. Chaudhary, S. Mondal, S.H. Mahmood, T.L. Lambat
Bismuth oxide nanomaterials (NMs) are effective materials for supercapacitor and battery technologies due to their redox behavior, superior charge storage capability, and being eco-friendly. Accordingly, we have witnessed a growing interest in these NMs applications and commercialization of effective energy storage devices. Recent studies have fused on the investigation of their supercapacitive properties via electrochemical techniques in an effort to understand their charge storage mechanism and improve their electrochemical performances. In this chapter, the article provides information on the chemical method preparation of bismuth oxide (Bi2O3) for supercapacitor applications. We present a summary of energy storage devices, structure and bismuth oxide electrode materials available in the market. Furthermore, the key challenges and future perspectives of bismuth oxide for energy storage applications are discussed.
Keywords
Bismuth Oxide NMs, Supercapacitor, Electrochemical Technique, Cyclic Voltammetry, Charge-Discharge Measurement
Published online 10/20/2024, 16 pages
Citation: A.P. Angre, P.S. Gaikar, P.A. Patil, R.G. Chaudhary, S. Mondal, S.H. Mahmood, T.L. Lambat, Recent advancements in supercapacitors of bismuth oxide nanomaterials, Materials Research Foundations, Vol. 169, pp 315-330, 2024
DOI: https://doi.org/10.21741/9781644903261-12
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Inguez Bacho I, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6:5008. https://doi.org/10.1039/c4nr00024b
[2] Forouzandeh P, Kumaravel V, Pillai S (2020) Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 10:969. https://doi.org/10.3390/CATAL10090969
[3] Gaikar PS, Gaikwad SL, Mahadule RK, Wakde GC, Angre AP, Bandekar AS, Arjunwadkar PR (2016) β-Cobalt Hydroxide as an Efficient Electrode for Electrochemical Supercapacitor Application. J Nanoeng Nanomanufacturing 6:157–160. https://doi.org/10.1166/jnan.2016.1278
[4] Li N, Li X, Yang C, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Adv 6:86744–86751. https://doi.org/10.1039/C6RA19529F
[5] A. Mondal, H. Tanaya Das, S. Mondal, V. N. Sonkusare, R. G. Chaudhary (2023) Emerging nanomaterials in energy storage. Emerging Applications of Nanomaterials, 141, 294-326. https://doi.org/10.1016/j.electacta.2012.10.088
[6] Chen S, Xing W, Duan J, Hu X, Qiao S (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A, 1:2941–2954. https://doi.org/10.1039/c2ta00627h.
[7] S.K. Tarik Aziz, M. Awasthi, S. Guria, M. Umekar, I. Karajagi, S. K. Riyajuddin, K. V. R. Siddhartha, A. Saini, A.K. Potbhare, R.G. Chaudhary, V. Vishal, P. C. Ghosh, A. Dutta, Electrochemical water splitting by a bidirectional electrocatalyst, STAR Protocols, 2023, 4, 102448.
[8] Shinde NM, Shinde P V., Mane RS, Ho Kim K (2021) Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: A review. Renew Sustain Energy Rev 135:110084. https://doi.org/10.1016/J.RSER.2020.110084
[9] Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2020) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 2020 561 56:173–200. https://doi.org/10.1007/S10853-020-05157-6
[10] Gaikar P, Pawar SP, Mane RS, Nuashad M, Shinde D V (2016) Synthesis of nickel sufide as a promising electrode material for pseudocapacitor application. RSC Adv 6:112589–112593. https://doi.org/10.1039/C6RA22606J
[11] Iro ZS, Subramani C, Dash SS (2016) A Brief Review on Electrode Materials for Supercapacitor. Int J Electrochem Sci 11:10628–10643. https://doi.org/10.20964/2016.12.50
[12] Zhang F, Zhang T, Yang X, Zhang L, Leng K, Huang Y, Chen Y (2013) A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci 6:1623–1632. https://doi.org/10.1039/c3ee40509e
[13] Sawangphruk M, Kaewsongpol T (2012) Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films. Mater Lett 87:142–145. https://doi.org/10.1016/j.matlet.2012.07.103
[14] A.K. Potbhare, SKT Aziz, Mohd. M. Ayyub, A. Kahate, R. Madankar, S. Wankar, A. Dutta, A. Abdala, S.H. Mohmood, R. Adhikari, R.G. Chaudhury, Bioinspired Graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: An Updated Review, Nanoscale Advances, 2024. doi.org/10.1039/D3NA01071F.
[15] Bhilkar, P. R., Madankar, R. S., Shrirame, T. S., Utane, R. D., Potbhare, A. K., Yerpude, S., Chaudhary, R. G. (2022). Functionalized carbon nanomaterials: fabrication, properties, and applications. Mater. Res., 135, 55-82. https://doi.org/10.21741/9781644902172-4
[16] Gaikar PS, Angre AP, Wadhawa G, Ledade P V., Mahmood SH, Lambat TL (2022) Green synthesis of cobalt oxide thin films as an electrode material for electrochemical capacitor application. Curr Res Green Sustain Chem 5:100265. https://doi.org/10.1016/j.crgsc.2022.100265
[17] Shrirame, T.S., Khan, J.S., Umekar, M.S., Potbhare, A.K., Bhilkar, P.R., Bhusari, G.S., Chaudhary, R.G. (2022). Graphene-polymer nanocomposites for environmental remediation of organic pollutants. Metal nanocomposites for energy and environmental applications, 321-349. http://dx.doi.org/10.1007/978-981-16-8599-6_14.
[18] De B, Banerjee S, Verma KD, Pal T, Manna P, Kar K (2020) Transition Metal Oxides as Electrode Materials for Supercapacitors. Springer Ser Mater Sci 302:89–111. https://doi.org/10.1007/978-3-030-52359-6_4
[19] Yong-gang W, Xiao-gang Z (2004) Preparation and electrochemical capacitance of RuO 2 / TiO 2 nanotubes composites. 49:1957–1962. https://doi.org/10.1016/j.electacta.2003.12.023
[20] Shinde NM, Xia QX, Yun JM, Singh S, Mane RS, Kim KH (2017) A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalt Trans 46:6601–6611. https://doi.org/10.1039/C7DT00953D
[21] A.K. Potbhare, P. Bhilkar, S. Yerpude, R. Madankar, S. Shingda, R. Adhikari, R.G. Chaudhary, Nanomaterials as photocatalyst, Application of Emerging Nanomaterials and Nanotechnology, 148 (2023) 304-333.
[22] Hu C, Huang Y, Chang K (2002) Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium ± iridium oxides for electrochemical supercapacitors. 108:117–127
[23] Chouke, Prashant B., Ajay K. Potbhare, Nitin P. Meshram, Manoj M. Rai, Kanhaiya M. Dadure, Karan Chaudhary, Alok R. Rai, Martin F. Desimone, Ratiram G. Chaudhary, and Dhanraj T. Masram. Bioinspired NiO nanospheres: Exploring in vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking, and proposed vacuolization mechanism. ACS Omega, 7 (2022): 6869-6884.
[24] Ali G, Yusoff M, Ng Y, Lim H, Feng C (2015) Potentiostatic and Galvanostatic Electrodeposition of Manganese Oxide for Supercapacitor Application: A Comparison Study. Curr Appl Phys 15:1143–1147. https://doi.org/10.1016/j.cap.2015.06.022
[25] Gaikar PS, Navale ST, Jadhav V V, Shinde P V, Dubal DP, Arjunwadkar PR, Stadler FJ, Naushad M, Ghfar AA, Mane RS (2017) A simple wet-chemical synthesis , reaction mechanism , and charge storage application of cobalt oxide electrodes of different morphologies. Electrochim Acta 253:151–162. https://doi.org/10.1016/j.electacta.2017.09.039
[26] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A.R. Rai, H.D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ -Bi2O3 microspindles, Nano-Structures & Nano-Objects, 13 (2018), 121-131.
[27] Devi N, Ray SS (2020) Performance of bismuth-based materials for supercapacitor applications: A review. Mater Today Commun 25:101691. https://doi.org/10.1016/j.mtcomm.2020.101691
[28] S.K. Tarik Aziz, M. Umekar, I. Karajagi, S.K. Riyajuddin, K.V.R. Siddhartha, A. Saini, A.K. Potbhare, R.G. Chaudhary, V. Vishal, P.C. Ghosh, A. Dutta. A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting, Cell Reports: Physical Science, 2022, 3(11) 101106.
[29] Shinde P V., Shinde NM, Shaikh SF, Lee D, Yun JM, Woo LJ, Al-Enizi AM, Mane RS, Kim KH (2020) Room-temperature synthesis and CO2-gas sensitivity of bismuth oxide nanosensors. RSC Adv 10:17217–17227. https://doi.org/10.1039/D0RA00801J
[30] Deng P, Wang H, Qi R, Zhu J, Chen S, Yang F, Zhou L, Qi K, Liu H, Xia BY (2020) Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catal 10:743–750. https://doi.org/10.1021/ACSCATAL.9B04043/SUPPL_FILE/CS9B04043_SI_001.PDF
[31] Köhler R, Siebert D, Kochanneck L, Ohms G, Viöl W (2019) Bismuth Oxide Faceted Structures as a Photocatalyst Produced Using an Atmospheric Pressure Plasma Jet. Catalysts 9:533. https://doi.org/10.3390/CATAL9060533
[32] Chouke, Prashant B., Kanhaiya M. Dadure, Ajay K. Potbhare, Ganesh Bhusari, A. Mondal, Karan Chaudhary, V. Singh, Martin F. Desimone, R. G. Chaudhary, and Dhanraj T. Masram, Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum Flower Extract for Photocatalytic Dye Degradation and Molecular Docking, ACS Omega, 7 (2022), 20983-20993.
[33] Qiu Y, Fan H, Chang X, Dang H, Luo Q, Cheng Z (2018) Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl Surf Sci 434:16–20. https://doi.org/10.1016/J.APSUSC.2017.10.171
[34] Leontie L, Caraman M, Alexe M, Harnagea C (2002) Structural and optical characteristics of bismuth oxide thin films. Surf Sci 507–510:480–485. https://doi.org/10.1016/S0039-6028(02)01289-X
[35] Trivedi M, Tallapragada R, Branton L, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of Atomic, Physical, and Thermal Properties of Bismuth Oxide Powder: An Impact of Biofield Energy Treatment. Am J Nano Res Appl 3:94–98. https://doi.org/10.11648/J.NANO.20150306.11
[36] Astuti Y, Fauziyah A, Nurhayati S, Wulansari A, Andianingrum R, Hakim A, Bhaduri G (2016) Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conf Ser Mater Sci Eng 107:1–8. https://doi.org/10.1088/1757-899X/107/1/012006
[37] Depablos-rivera O, Martínez A, Rodil SE (2021) Interpretation of the Raman spectra of bismuth oxide thin fi lms presenting different crystallographic phases. J Alloys Compd 853:157245. https://doi.org/10.1016/j.jallcom.2020.157245
[38] Zhang L, Hashimoto Y, Taishi T, Nakamura I, Ni QQ (2011) Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Appl Surf Sci 257:6577–6582. https://doi.org/10.1016/J.APSUSC.2011.02.081
[39] Abu-Dief AM, Mohamed WS (2017) α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Mater Res Express 4:035039. https://doi.org/10.1088/2053-1591/AA6712
[40] Li C, He P, Dong F, Liu H, Jia L, Liu D, Du L, Liu H, Wang S, Zhang Y (2019) An efficient and facile one-step synthesis strategy: Bismuth oxide with controllable size and shape for high-performance supercapacitors. Mater Lett 245:29–32. https://doi.org/10.1016/j.matlet.2019.02.098
[41] Ambare R, Shinde P, Nakate U, Lokhande B, Mane R (2018) Sprayed Bismuth Oxide Interconnected Nanoplates Supercapacitor Electrode Materials. Appl Surf Sci 453:215–219. https://doi.org/10.1016/j.apsusc.2018.05.090
[42] Chu D, Wu Y, Wang L (2022) Synthesis and characterization of novel coral spherical bismuth oxide. Results Chem 4:100448. https://doi.org/10.1016/j.rechem.2022.100448
[43] Sun J, Wang J, Li Z, Yang Z, Yang S (2015) Controllable synthesis of 3D hierarchical bismuth compounds with good electrochemical performance for advanced energy storage devices. RSC Adv 5:51773–51778. https://doi.org/10.1039/C5RA09760F
[44] Huang X, Yan J, Zeng F, Yuan X, Zou W, Yuan D (2013) Facile preparation of orange-like Bi2O2.33 microspheres for high performance supercapacitor application. Mater Lett 90:90–92. https://doi.org/10.1016/J.MATLET.2012.09.019
[45] Zheng FL, Li GR, Ou YN, Wang ZL, Su CY, Tong YX (2010) Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem Commun 46:5021–5023. https://doi.org/10.1039/C002126A
[46] V S, R. G. B, B. J. L, R. C. A (2023) Electro-Synthesized Bismuth Oxide Nanomaterials on Flexible Substrate Electrode for Supercapacitor Application. ES Energy Environ. https://doi.org/10.30919/esee944
[47] Han Y, Li L, Liu Y, Li X, Qi X, Song L (2018) Fabrication of Strontium Bismuth Oxides as Novel Battery-Type Electrode Materials for High-Performance Supercapacitors. 2018.
[48] Teli AM, Bhat TS, Beknalkar SA, Mane SM, Chaudhary LS, Patil DS, Pawar SA, Efstathiadis H, Cheol Shin J (2022) Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor. Chem Eng J 430:133138. https://doi.org/10.1016/j.cej.2021.133138
[49] Danamah HM, Raut SD, Shaikh ZA, Mane RS (2022) Chemical Synthesis of Bismuth Oxide and Its Ionic Conversion to Bismuth Sulphide for Enhanced Electrochemical Supercapacitor Energy Storage Performance. J Electrochem Soc 169:120537. https://doi.org/10.1149/1945-7111/acaac9
[50] Jo S, Pak S, Lee Y-W, Cha S, Hong J, Sohn JI (2023) Enhancing the Electrochemical Energy Storage Performance of Bismuth Ferrite Supercapacitor Electrodes via Simply Induced Anion Vacancies. Int J Energy Res 2023:1–9. https://doi.org/10.1155/2023/2496447
[51] Prasath A, Athika M, Duraisamy E, Selva Sharma A, Sankar Devi V, Elumalai P (2019) Carbon Quantum Dot-Anchored Bismuth Oxide Composites as Potential Electrode for Lithium-Ion Battery and Supercapacitor Applications. ACS Omega 4:4943–4954. https://doi.org/10.1021/acsomega.8b03490
[52] Singh S, Sahoo RK, Shinde NM, Yun JM, Mane RS, Kim KH (2019) Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor. Energies 12:3320. https://doi.org/10.3390/en12173320
[53] Mane SA, Kashale AA, Kamble GP, Kolekar SS, Dhas SD, Patil MD, Moholkar A V., Sathe BR, Ghule A V. (2022) Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J Alloys Compd 926:166722. https://doi.org/10.1016/j.jallcom.2022.166722
[54] Kumar V, Soam A, Sahoo PK, Panda HS (2021) Enhancement of electrochemical properties of carbon solution doped bismuth ferrite for supercapacitor application. Mater Today Proc 41:165–171. https://doi.org/10.1016/j.matpr.2020.08.515
[55] Ji Z, Dai W, Zhang S, Wang G, Shen X, Liu K, Zhu G, Kong L, Zhu J (2020) Bismuth oxide/nitrogen-doped carbon dots hollow and porous hierarchitectures for high-performance asymmetric supercapacitors. Adv Powder Technol 31:632–638. https://doi.org/10.1016/j.apt.2019.11.018
[56] Wang L, He Q, Xiao F, Yang L, Jiang Y, Su R, He P, Lei H, Jia B, Tang B (2024) Three-dimensional hierarchical nanosheets based spherical bismuth metal-organic frameworks: Controllable synthesis and high performance for supercapacitor. Electrochim Acta 484:144082. https://doi.org/10.1016/j.electacta.2024.144082.
[57] Jalalah M, Sasmal A, Nayak AK, Harraz FA (2023) Rapid, external acid-free synthesis of Bi2WO6 nanocomposite for efficient supercapacitor application. J Taiwan Inst Chem Eng 143:104697. https://doi.org/10.1016/j.jtice.2023.104697.
[58] Shinde NM, Ghule BG, Raut SD, Narwade SH, Pak JJ, Mane RS (2021) Hopping Electrochemical Supercapacitor Performance of Ultrathin BiOCl Petals Grown by a Room-Temperature Soft-Chemical Process. Energy & Fuels 35:6892–6897. https://doi.org/10.1021/acs.energyfuels.1c00308.
[59] Cui Y, Cheng Q-Y, Wu H, Wei Z, Han B-H Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors. https://doi.org/10.1039/c3nr01480k