Ti-based nanomaterials and their potent applications

$40.00

Ti-based nanomaterials and their potent applications

Alpa Shrivastava, Meena Chakraborty, Sunita Sanwaria, Ajaya Kumar Singh

Nanoparticles (NPs) have become center point of interest for researchers all over the world because of its enthralling properties and wide range of application in various fields such as chemical energy, healthcare industry, cosmetic industry etc. Titanium is a transition metal which is non-toxic, economical, biologically inactive, chemically inert, having large surface area, good catalytic activity and great absorption capacity in the near-IR region. Therefore, areas of applications and new possibilities are increasing. At nanoscale we can exploit physical properties different than macroscale Titanium. Green synthesized Ti-based NPs research is gaining momentum as better pollution free alternative. This review will focus on methods of preparation, characteristics, application, benefits and challenges in use of Ti-based NMs in different fields.

Keywords
Titanium Oxide NPs, Titanium Nitride, Titanium Carbide NPs, Nanoparticles in Anticancer Therapy, Nanoparticles Antimicrobial Property

Published online 10/20/2024, 40 pages

Citation: Alpa Shrivastava, Meena Chakraborty, Sunita Sanwaria, Ajaya Kumar Singh, Ti-based nanomaterials and their potent applications, Materials Research Foundations, Vol. 169, pp 275-314, 2024

DOI: https://doi.org/10.21741/9781644903261-11

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] S.Griffin, , M.I, Masood. M.J Nasim, M.Sarfraz, A.P, Ebokaiwe, K.H.Schäfer, C.M.Keck, C. Jacob, Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel). (2017). 29.7(1):3. https://doi.org/ 10.3390/antiox7010003
[2] J. P. Singh, M. Kumar, A. Sharma, A. Pandey, G., Chae, K. H., & S. Lee, Bottom-up and top-down approaches for MgO. Sonochemical Reactions. (2020)10.5772/intechopen.91182
[3]. K.Lan, Y. Liu, W. Zhang, Y. Liu,A. Elzatahry, R. Wang, R., … & D. Zhao, Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. Journal of the American Chemical Society, (2018). 140(11), 4135-4143
[4] K. Kim, K. T., M.Y. Eo, T. T. H Nguyen, & S.M. Kim, General review of titanium toxicity. International Journal of Implant Dentistry. (2019a). 5(1). 1-12
[5] B., M. Malekshahi, K.A. Nemati, L. Fatholahi, Z. Malekshahi, A review on synthesis of nano-TiO2 via different methods. Journal of nanostructures, (2013). 3(1). 1-9
[6] W. Zhou, W. Li, W., Wang, J. Q., Qu, Y., Yang, Y., Y. Xie & Zhao, D. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. Journal of the American Chemical Society. (2014). 136(26). 9280-9283
[7] X. Wang, X. Zhong, & L. Cheng, Titanium-based nanomaterials for cancer theranostics. Coordination Chemistry Reviews. (2021). 430. 213662
[8] S. Ghosh, P. Ranjan, A. Kumaar, R. Sarathi, & S. Ramaprabhu, Synthesis of titanium carbide nanoparticles by wire explosion process and its application in carbon dioxide adsorption. Journal of Alloys and Compounds. (2019)794. 645–653. https://doi.org/10.1016/j.jallcom.2019.04.299
[9] S. Tang, Q. Cheng, J. Zhao, J. Liang, C. Liu, Q. Lan, Q. Cao, Y.-C., Liu, J. Preparation of titanium nitride nanomaterials for electrode and application in energy storage. Results Phys. 7. (2017)1198–1201
[10] A.A., Popov, G.V. Tikhonowski, P.V. Shakhov, E.A. Popova-Kuznetsova , G.I. Tselikov, R.I.Romanov, A.M. Markeev, S.M.Klimentov, A.V. Kabashin, Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions. Nanomaterials. (2022)12(10):1672. doi.org/10.3390/nano12101672
[11] U. Guler, S. Suslov, A.V. Kildishev, A. Boltasseva & V.M. Shalaev, Colloidal plasmonic titanium nitride nanoparticles: properties and applications. Nanophotonics, (2015).4(3). 269-276
[12] E.B. Secor, N.S.Bell, M.P.Romero, R.R. Tafoya, T.H. Nguyen, & T.J.Boyle, Titanium hydride nanoparticles and nanoinks for aerosol jet printed electronics. Nanoscale. (2022).14(35). 12651-12657
[13] A. Kumar & G. Pandey,Different methods used for the synthesis of TiO2 based nanomaterials: A review. Am. J. Nano Res. Appl, (2018). 6(1), 1-10
[14] B. Niu, X. Wang, K. Wu, X. He, & R. Zhang, Mesoporous titanium dioxide: Synthesis and applications in photocatalysis, energy and biology. Materials. (2018). 11(10). 1910
[15] S.T. Yerpude, A.K. Potbhare, P. Bhilkar, A.R. Rai, R.P. Singh, A.A. Abdala, R. Adhikari, R. Sharma, R.G. Chaudhary, Biomedical and clinical applications of platinum-based nanohybrids: An update review, Environmental Research, 231 (2023) 116148
[16] M.S. Umekar, G.S. Bhusari, T. Bhoyar, V. Devthade, B.P. Kapgate, A.P. Potbhare, R.G. Chaudhary & A.A. Abdala, Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants, Current Nanoscience, 19 (2) 2023, 148-169
[17] H.Zhang, & J.F. Banfield, Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chemical reviews. 114(2014). 19. 9613-9644
[18] M.T.Noman, M.A. Ashraf, & A. Ali, Synthesis and applications of nano-TiO2: A review. Environmental Science and Pollution Research, 26, (2019)3262-3291
[19] G. Nagpal, R. Chaudhary, R.G. Chaudhary & N.B. Singh, Emerging trends of nanotechnology in cosmetics, Applications of emerging nanomaterials and nanotechnology, Materials Research Forum LLC, 2023, 148, pp.127-169
[20] J. Shi, D. Yang,Z. Jiang, Y. Jiang, Y. Liang, Y. Zhu, Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization. J. Nanopart. Res. 14 (9). (2012) 1120
[21] M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. McGinnis, Jr M.F. Hochella, D. Rejeski, M.S.Hull, Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotech 6. (2015) 1769–1780
[22] M. N. Khan, M. Mobin, Z.K. Abbas, K.A. AlMutairi, Z.H. Siddiqui, Role of nanomaterials in plants under challenging environments. Plant Physio. Biochem. 110. (2017). 194–209
[23] M.A. Irshad, M.B. Shakoor, S. Ali, R. Nawaz, M. Rizwan, Synthesis and application of titanium dioxide nanoparticles for removal of cadmium from wastewater: kinetic and equilibrium study. Water Air Soil Pollut. 230 (2019)12, 278
[24] R.G. Chaudhary, G.S. Bhusari, A.D. Tiple, A.R. Rai, S.R. Somkuvar, A.K. Potbhare, T.L. Lambat, P.P. Ingle & A.A. Abdala, Metal/metal oxide nanoparticles: toxicity, applications, and future prospects, Current Pharmaceutical Design, 2019, 25, 4013-4029.
[25] M.A. Irshad, M. A., Nawaz, R., U.R. Rehman, M. Z., Adrees, M., Rizwan, M., Ali, S., … & Tasleem, S.Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and environmental safety. 212. (2021) 111978
[26] G. Ou, Z Li, D. Li, L. Cheng, Z. Liu, H. Wu, Photothermal therapy by using titanium oxide nanoparticles. Nano Res. (2016), 9(5):1236-1243. https://doi.org/10.1007/s12274-016-1019-8
[27] R. Ghamarpoor, A. Fallah, M. Jamshidi, Investigating the use of titanium dioxide (TiO2) nanoparticles on the amount of protection against UV irradiation. Sci Rep 13, (2023) 9793. https://doi.org/10.1038/s41598-023-37057-5
[28] M.H..Ropers & H. Terrisse, & Mercier-Bonin, Muriel & H. Bernard. (2017). Titanium Dioxide as Food Additive. 10.5772/intechopen.68883
[29] S. Chandren & N. Zulfemi, Titania nanoparticles coated on polycarbonate car headlights for self-cleaning purpose. Journal of Physics: Conference Series. 1321. (2019) 022032. 10.1088/1742-6596/1321/2/022032
[30] M.L.Coutinho, J.P. Veiga, M.F. Macedo, A.Z. Miller, Testing the Feasibility of Titanium Dioxide Sol-Gel Coatings on Portuguese Glazed Tiles to Prevent Biological Colonization. Coatings, 10, (2020)1169. https://doi.org/10.3390/coatings10121169
[31] S. Paul, M.A. Rahman, S.B. Sharif, J.H. Kim, S.E.T. Siddiqui, M.A.M Hossain. TiO2 as an Anode of High-Performance Lithium-Ion Batteries: A Comprehensive Review towards Practical Application. Nanomaterials, 12, (2022) 2034. https://doi.org/10.3390/nano12122034
[32] El Sharkawy, H.M., Shawky, A.M., Elshypany, R. et al. Efficient photocatalytic degradation of organic pollutants over TiO2 nanoparticles modified with nitrogen and MoS2 under visible light irradiation. Sci Rep 13, (2023) 8845. https://doi.org/ https://doi.org/10.1038/s41598-023-35265-7
[33] R. Sharma, A. Sarkar, R. Jha,A. K. Sharma, D. Sharma. Sol-gel–mediated synthesis of TiO2 nanocrystals: structural, optical, and electrochemical properties. Int. J. Appl. Ceram. Technol. 17 (2020) 3. 1400–1409
[34] V.M. Ramakrishnan, M. Natarajan, A. Santhanam, V. Asokan, D. Velauthapillai. Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Mater. Res. Bull. 97. (2018) 351–360
[35] N. Horti, M. Kamatagi, N.Patil, S. Nataraj, M. Sannaikar, S. Inamdar. Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: effect of calcination temperature. Optik 194, (2019) 163070
[36] Z. Wang,A.A. Haidry, L.Xie, A. Zavabeti, Z. Li, W. Yin, R.L. Fomekong, B. Saruhan, Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Appl. Sur. Sci. (2020)533. 147383
[37] A. Mondal, M.S. Umekar, G.S. Bhusari, P.B. Chouke, T. Lambat, S. Mondal, R.G. Chaudhary, S.H. Mahmood, Biogenic synthesis of metal/metal oxide nanostructured materials, Curr. Pharm. Biotechnol. 22 (13) 2021, 1782-1793.
[38] M.S. Umekar, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, M. Sami, Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract, Materials Today: Proceedings, 2020, 29, 709-714
[39] S.S. Muniandy, N.H.M. Kaus, Z.T. Jiang, M. Altarawneh, H.L. Lee. Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv. 7 (2017) 76. 48083–48094
[40] N.S. Venkataramanan, K. Matsui, H. Kawanami,Y. Ikushima. Green synthesis of titania nanowire composites on natural cellulose fibers. Green Chem. 9 (2007) 1, 18–19
[41] S.J. Bao,C. Lei, M.W. Xu, C.J.Cai, C. D.Z. Jia. Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application. Nanotechnology. 23 (20). (2012)205601
[42] A.A. Jawad, R.M. Lua’i, R.M.Lua’I , N.H. Safir, S.A. Jawad & A.K. Abbas,Synthesis Methods and Applications of TiO2 based Nanomaterials. Al-Nahrain Journal of Science, 25(4), (2022).1-10
[43] Kretzschmar, A. L., & Manefield, M. The role of lipids in activated sludge floc formation. AIMS Environmental science, 2(2). (2015).122-133
[44] G. Scholz & E. Kemnitz. Sol–gel synthesis of metal fluorides: reactivity and mechanisms. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds. (2017).609-649. Elsevier
[45] C. Hintze, K. Morita,R. Riedel, E. Ionescu & G. Mera. Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. Journal of the European Ceramic Society, 36(12), (2016). 2923-2930
[46] A. Zdravkov, J. Kudryashova, A. Kanaev, A. Povolotskiy, A. Volkova, E. Golikova & N.A. Khimich. A new solvothermal route to efficient titania photocatalyst. Materials Chemistry and Physics. (2015) 160, 73-79
[47] S. Kurajica, I. Minga, I. Grčić, V. Mandić & M. Plodinec. The utilization of modified alkoxide as a precursor for solvothermal synthesis of nanocrystalline titania. Materials Chemistry and Physics. 196, (2017).194-204
[48] H. Peng, G. Li & Z. Zhang. ynthesis of bundle-like structure of titania nanotubes. Materials Letters. 59 (10). (2005).1142-1145
[49] P. Kluson, H. Luskova, O. Solcova, L. Matejova & T. Cajthaml. Lamellar micelles-mediated synthesis of nanoscale thick sheets of titania. Materials Letters. 61(14-15). (2007).2931-2934
[50] S. Elbasuney. Sustainable steric stabilization of colloidal titania nanoparticles. Applied Surface Science. (2017).409, 438-447
[51] E. Stathatos, P. Lianos, F. Del Monte, D. Levy & D. Tsiourvas. Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates. Langmuir. 13(16). (1997).4295-4300
[52] G. Cabello, R.A. Davoglio & E.C. Pereira. Microwave-assisted synthesis of anatase-TiO2 nanoparticles with catalytic activity in oxygen reduction. Journal of Electroanalytical Chemistry. (2017).794. 36-42
[53] J. Kang, L. Gao, M. Zhang, J. Pu, L. He, R. Ruan, R., … & Chen, G. Synthesis of rutile TiO2 powder by microwave-enhanced roasting followed by hydrochloric acid leaching. Advanced Powder Technology. 31(3). (2020).1140-1147
[54] P. Selvaraj, A. Roy, H. Ullah, P. Sujatha Devi, A.A. Tahir, T.K. Mallick, & S. Sundaram, Soft‐template synthesis of high surface area mesoporous titanium dioxide for dye‐sensitized solar cells. International Journal of Energy Research. 43(1). (2019).523-534
[55] I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, & K.O.Savka,Methods of titanium dioxide synthesis. Physics and Chemistry of Solid State, 21(3). (2020).462-477
[56] Q. Zhang, & C. Li, High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition. Nanomaterials. 10(5). (2020b).911
[57] A. Jedrzejczak, D. Batory, M. Prowizor, M. Dominik, M. Smietana,M. Cichomski , … & M. Dudek. Titanium (IV) isopropoxide as a source of titanium and oxygen atoms in carbon based coatings deposited by Radio Frequency Plasma Enhanced Chemical Vapour Deposition method. Thin Solid Films, (2020). 693, 137697
[58] M.N.Subramaniam, P.S. Goh, W.J. Lau, A.F. Ismail, M. Gürsoy & M. Karaman. Synthesis of Titania nanotubes/polyaniline via rotating bed-plasma enhanced chemical vapor deposition for enhanced visible light photodegradation. Applied Surface Science. (2019)484. 740-750
[59] C. Cao, W. Liu, A. Javadi H. Ling, X. Li. Scalable Manufacturing of 10 nm TiC Nanoparticles through Molten Salt Reaction. Procedia Manufacturing. 10, (2017),634-640. https://doi.org/10.1016/j.promfg.2017.07.066
[60] P. Anandgaonker, G. Kulkarni, S. Gaikwad, S., A. Rajbhoj. Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry .12. (8). (2019).1815-1822. https://doi.org/10.1016/j.arabjc.2014.12.015
[61] Q.D. Mai, H.A. Nguyen, N.N. Huyen et al. Large-Scale Green Electrochemical Synthesis of Smart Titanium Dioxide Nanomaterials: Controlled Morphology and Rotatable Surface Ligands via Tuning Electrolyte Structures. J. Electron. Mater. 52, (2023).5884–5900. https://doi.org/10.1007/s11664-023-10550-3
[62] C. Xiaobo. Titanium dioxide nanomaterials and their energy applications. Chinese Journal of Catalysis. 30(8). (2009).839-851
[63] O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes E.C. Dickey. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research, 18. 1. (2003).156-165
[64] H. Arami, M. Mazloumi,R. Khalifehzadeh & S.K. Sadrnezhaad. Sonochemical preparation of TiO2 nanoparticles. Materials Letters. (2007)61. 23-24. 4559-4561
[65] J.M. Wu, S. Hayakawa, K. Tsuru & A. Osaka, Nanocrystalline titania made from interactions of Ti with hydrogen peroxide solutions containing tantalum chloride. Crystal growth & design. 2(2). (2002)147-149
[66] G. Nabi, W. Raza, M. Tahir, M.Green synthesis of TiO2 nanoparticle using cinnamon powder extract and the study of optical properties. J. Inorg. Organomet. Polym. Mater. (2019) 1–5
[67] S.N. Kumar, A. Zeenat, M. Pradeep Kumar, K. Pradeep. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process. Synth. 9 (1), (2020) 171–181
[68] V. Patidar, P. Jain. Green synthesis of TiO2 nanoparticle using moringa oleifera leaf extract. Int. Res. J. Eng. Technol. 4. (2017)470–473
[69] A.M. Amanulla, R. Sundaram, Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater. Today Proc. 8, (2019). 323–331
[70] J.M. Abisharani, S. Devikala, R.D. Kumar, M. Arthanareeswari, P. Kamaraj. Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Mater. Today Proc. 14. (2019)302–307
[71] D. Hariharan, K. Srinivasan, L.C. Nehru. Synthesis and characterization of TiO2 nanoparticles using cynodon dactylon leaf extract for antibacterial and anticancer (a549 cell lines) activity. J Nanomed Res. (2017) 5(6):1‒6. https://doi.org/ 10.15406/jnmr.2017.05.00138
[72] M. Peiris, T. Gunasekara, P. Jayaweera, S. Fernando. TiO2 nanoparticles from Baker’s yeast: a potent antimicrobial. J. Microbiol. Biotechnol. 28 (10). (2018).1664–1670
[73] G.K. Ağçeli, H. Hammachi, S.P. Kodal et al. A Novel Approach to Synthesize TiO2 Nanoparticles: Biosynthesis by Using Streptomyces sp. HC1. J Inorg Organomet Polym 30, (2020).3221–3229. https://doi.org/10.1007/s10904-020-01486-w
[74] S. J. Bao, C. Lei,M.W. Xu.C.J. Cai , C.J. Cheng, C.M. Li, Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm, (2013),15, 4694-4699
[75] S.D. Mo and W.Y. Ching. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B (1995). 51: 13023–13032.
[76] Y. Hoang, H. Zung and N.H.B. Trong. Structural properties of amorphous TiO2 nanoparticles. The European Physical Journal D (2007) 44: 515–524.
[77] S, M, Gupta and M. Tripathi. A review of TiO2 nanoparticles. Chinese Science Bulletin (2011).56: 1639.
[78] A.I. Kingon, J.P. Maria and S.K. Streiffer. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature. 406. (2000). 1032–1038.
[79] W. Li, C. Ni, H. Lin et al. Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics. 96. (2004). 6663–6668.
[80] D. Dambournet, I. Belharouak and K. Amine. Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chemistry of Materials 22. (2010). 1173–1179.
[81] Q. Zhang, L. Gao and J. Guo. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B 26. (2000). 207–215.
[82] G. Govindasamy, P. Murugasen and S. Sagadevan. Investigations on the synthesis, optical and electrical properties of TiO2 thin films by chemical bath deposition (CBD) method. Materials Research. 19(2016). 413–419.
[83] P.D. Christy, N.S.N. Jothi, N. Melikechi and P. Sagayaraj. Synthesis, structural and optical properties of well dispersed anatase TiO2 nanoparticles by non-hydrothermal method. Crystal Research and Technology 44 (2009).484–488.
[84] Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, Y. He. Synthesis and optical properties of TiO2 nanoparticles, Materials Letters,61,1,2007,79-83. https://doi.org/10.1016/j.matlet.2006.04.010
[85] O.U. Akakuru, Z.M. Iqbal & A. Wu. TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine. In TiO2 nanoparticles: properties and applications. Eds Wu, A., Ren, W., Wiley Wch. (2020).1-66
[86] K.Nakata and A. Fujishima. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C. 13. (2012)169–189.
[87]. S. Shaikh, R. Mane, B. Min et al. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Sci Rep. 6. (2016). 20103. https://doi.org/10.1038/srep20103
[88] A.K. Tripathi, M.K.Singh, M.C. Mathpal, et al. Study of structural transformation in TiO2 nanoparticles and its optical properties. Journal of Alloys and Compounds. 549 (2013). 114–120.
[89] A. Gogos, K. Knauer, and T.D. Bucheli, Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 60 (2012). 9781–9792.
[90] S.G.Kumar, and L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A 115(2011). 13211–13241
[91] G.O.U. Okeke, Physico-thermal properties of TiO2 nanoparticles using molecular dynamics simulations with relevance to thermal conductance of nanofluids, Thesis, University of Leeds. (2013)
[92] H. Alias, M. C. Ani. Thermal characteristic of nanofluids containing titanium dioxide nanoparticles in ethylene glycol. Chemical Engineering Transactions. 56. (2017)1459-1464 doi:10.3303/CET1756244
[93] I. Ali, M. Suhail, Z.A. Alothman & A. Alwarthan, Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC advances. 8(53). (2018)30125-30147
[94] U. Guler, A. Kildishev, A. Boltasseva and V. Shalaev. Titanium nitride nanoparticles for therapeutic applications. Conference on Lasers and Electro-Optics (CLEO) – Laser Science to Photonic Applications. USA. (2014).1-2, doi: 10.1364/CLEO_QELS.2014.FM1K.4
[95] L. Cheng, C. Wang, L.Z. Feng, K. Yang, Z. Liu. Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev. 114, (2014).10869−10939
[96] Yu. Cao, W. Tingting, D. Wenhao, D. Haifeng, Z. Xueji. TiO2 Nanosheets with Au Nanocrystals Decorated Edge for Mitochondria-Targeting Enhanced Sonodynamic Therapy. Chemistry of Materials, Acs. chemmater. (2019). https://doi:10.1021/acs.chemmater.9b03430
[97] S. Kim, S. Im, E. Park, J. Lee, C. Kim, T. Kim & W.J. Kim. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine: Nanotechnology. Biology and Medicine, (2019b).102110. https://doi:10.1016/j.nano.2019.102110
[98] R. Kim. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. Apr 15;103(8). (2005).1551-60. https://doi.org/ 10.1002/cncr.20947
[99] T. Shrirame, P. Bhilkar, A. Chaudhary, A. Rai, R. Singh, P. Dhongle, S. Thakare, A. Abdala, R. Chaudhary, Magnetic Nanoparticles: Fabrications and applications in cancer therapy and diagnosis, magnetic nanoparticles for biomedical applications, Materials Research Forum, 143 (2023) pp.199-232.
[100] M. Ferrari, A. Barker. Downing G, Cancer nanotechnology: opportunities and challenges. Nanobiotechnology. 1. (2005).129. https://doi.org/10.1038/nrc1566
[101] N. Reed, R. Raliya, R. Tang, B. Xu, N. Mixdorf, S. Achilefu & P. Biswas. Electrospray Functionalization of Titanium Dioxide Nanoparticles with Transferrin for Cerenkov Radiation Induced Cancer Therapy. ACS Applied Bio Materials. (2019). https://doi.org/10.1021/acsabm.8b00755
[102] Q.S. Xian, T. Shen, L. Liu, A. Cheng, Z. Liu. Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale. 7. (2015).6380–6387. https://doi.org/10.1039/C5NR00893J
[103] C. Wang, C. Dai, Z. Hu, H. Li, L. Yu, H. Lin, HJ. Bai, Y. Chen. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms, Nanoscale Horiz. 4 (2019a).415–425
[104] X. Han, J. Huang, X. Jing, D. Yang, H. Lin, Z. Wang & Y. Chen. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. Acs Nano, 12(5), (2018).4545-4555
[105] M. Wang, Y. Zhao, Chang, B. Ding, X. Deng, S. Cui, Z. Hou, J. Lin. Azo Initiator Loaded Black Mesoporous Titania with Multiple Optical Energy Conversion for Synergetic Photo-Thermal-Dynamic Therapy A.C.S. Appl. Mater. Interfaces 11. (2019b).47730–47738
[106] K. Gao, W. Tu, X. Yu, F. Ahmad, X. Zhang, W. Wu, X. An. X. Chen, X, W. Li, W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics. 9(18) (2019).5214-5226. https://doi.org/10.7150/thno.33574
[107] M.W. Akram, F. Raziq, M. Fakhar-e-Alam, M.H. Aziz, K.S. Alimgeer, M. Atif, M. Amir, A. Hanif, W.A. Farooq. Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications, Journal of Photochemistry and Photobiology A: Chemistry. 84. (2019).112040. https://doi.org/10.1016/j.jphotochem.2019.112040
[108] J.L. Song, Z.Q. Huang, J. Mao, W.J. Chen, B. Wang, F.W. Yang, S.H. Liu, H.J. Zhang, L.P. Qiu, J.H. Chen. A facile synthesis of uniform hollow MIL-125 titanium-based nanoplatform for endosomal esacpe and intracellular drug delivery, Chemical Engineering Journal, 396. (2020). 125246. doi.org/10.1016/j.cej.2020.125246
[109] X. Yuan, Y. Zhu, S. Li, Y. Wu, Z. Wang, R. Gao, S. Luo, J. Shen, J. Wu, and L. Ge. Titanium nanosheet as robust and biosafe drug carrier for combined photochemo cancer therapy. Journal of Nanobiotechnology 20 (2022). 154. doi.org/10.1186/s12951-022-01374-0
[110] S. Abdel-Ghany, S. Raslan, H. Tombuloglu et al. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2, upregulation. Biotech. 10. 9 (2020). 407. https://doi.org/ 10.1007/s13205-020-02391-2
[111] M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, A. Alshamshan, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci. Rep. 7. (2017). 17662
[112] P.M. Gschwend, S. Conti, A. Käch, C. Maake, & S.E. Pratsinis, Silica-coated TiN particles for killing cancer cells. ACS Applied Materials & Interfaces. (2019). doi:10.1021/acsami.9b07239
[113] T. López, E. Ortiz, P. Guevara, E. Gómez, E., & O. Novaro, Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment. Materials Chemistry and Physics.146(1-2). (2014). 37–49. https://doi:10.1016/j.matchemphys. 2014.02
[114] J. Mou, T. Lin, F. Huang, et al. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterials 84: (2016). 13–24. https://doi: 10.1016/j.biomaterials.2016.01.009
[115] W. He, K. Ai, K., C. Jiang, Y. Li, X. Song, & L. Lu. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials. 132. (2017). 37–47. https://doi:10.1016/j.biomaterials.2017.04.007
[116] M. A. Behnam, F. Emami, Z. Sobhani, A.R. Dehghanian. The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran J Basic Med Sci. 21. (2018). 1133-1139. https://doi.org/ 10.22038/IJBMS.2018.30284.7304
[117] W. Guo, F. Wang, D. Ding, C. Song, C. Guo & S. Liu. TiO2–x Based Nanoplatform for Bimodal Cancer Imaging and NIR-Triggered Chem/Photodynamic/Photothermal Combination Therapy. Chemistry of Materials. 29(21). (2017). 9262–9274. https://doi.org/ 10.1021/acs.chemmater.7b03241
[118] F. Shokrolahi, E. Aliasgari, A. Mirzaie. Cytotoxic Effects of Titanium Dioxide Nanoparticles on Colon Cancer Cell Line (HT29) and Analysis of Caspase-3 and 9 Gene Expression Using Real Time PCR and Flow Cytometry. Iran South Med J. 21.6. (2019). 426-438
[119] M.Y. Bilkan, Z. Çiçek, A.G.C. Kurşun, M. Özler, M.A. Eşmekaya. Investigations on Effects of Titanium Dioxide (TiO2) Nanoparticle in Combination with UV Radiation on Breast and Skin Cancer Cells. (2022). Research Square. https://doi.org/10.21203/rs.3.rs-2084950/v1
[120] H. Naghoosi, M.A. Saremi . Titanium Dioxide Nanoparticle Can Induce Apoptosis in Cancer Cells. Autumn. 5. 19 (2020) 6-18
[121] N. Lagopati, A. kotsinas, D. veroutis, K. evangelou and Others. Biological Effect of Silver-modified Nanostructured Titanium Dioxide in Cancer. Cancer genomics & proteomics (2021). 18: 425-439 doi:10.21873/cgp.20269
[122] S. Azimeea,M. Rahmatic, H. Fahimi, M.A. Moosavi. TiO2 nanoparticles enhance the chemotherapeutic effects of 5-fluorouracil in human AGS gastric cancer cells via autophagy blockade. Life Sciences 248 (2020). 117466. https://doi.org/10.1016/j.lfs.2020.117466
[123] H. Iqbal, A. Razzaq, B. Uzair, N. Ul. Ain,S. Sajjad, SN.A. Althobaiti, A.E. Albalawi, B. Menaa, M. Haroon, M. Khan. et al. Breast Cancer Inhibition by Biosynthesized Titanium Dioxide Nanoparticles Is Comparable to Free Doxorubicin but Appeared Safer in BALB/c Mice. Materials. 14. (2021). 3155
[124] E.A. Rozhkova, I. Ulasov, B. Lai, Dimitrijevic, N. M., Lesniak, M. S., & Rajh, T. A High-Performance Nanobio Photocatalyst for Targeted Brain Cancer Therapy. Nano Letters, (2009). 9(9). 3337–3342. https://doi.org/10.1021/nl901610f
[125] V. Bernard, V. Mornstein. The viability of ovarian carcinoma cells a2780 affected by titanium dioxide nanoparticles and low ultrasound intensity. Lékař a technika, Vol. 46. 1. (2016) 21-24
[126] K.N. Rahmani, Y. Rasmi, A. Abbasi, N. Koshoridze, A. Shirpoor, G. Burjanadze, E. Saboory. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac J Cancer Prev. 26. (2018). 19(10):2821-2829. https://doi.org/ 10.22034/APJCP.2018.19.10.2821
[127] G. Kaur, T. Willsmore, K. Gulati, I. Zinonos, Y. Wang, M. Kurian, S. Hay, D. Losic, A. Evdokiou. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment, Biomaterials. 101. (2016). 176-188. https://doi.org/10.1016/j.biomaterials.2016.05.048
[128] Y. Wang, Q. Wang, C. Zhang, Synthesis of Diamond-Shaped Mesoporous Titania Nanobricks as pH-Responsive Drug Delivery Vehicles for Cancer. Chemistry select Therapy. 4, (2019c). 28.8225-8228. doi.org/10.1002/slct.201900992
[129] M.J. Hajipour, K.M. Fromm, Akbar, A. Ashkarran, et al. Antibacterial properties of nanoparticles. Trends Biotechnol.30.10. (2012). 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
[130] Z. Pang, R. Raudonis, B.R. Glick, B, T.J. Lin, Z. Cheng, Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. (2019). https://doi.org/10.1016/ j.biotechadv.2018.11.013
[131] M.G. Vincent, N.P. John, P.M. Narayanan, C. Vani, S. Murugan. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm Sci.4(7) (2014). 41–46. https://doi.org/10.7324/ JAPS.2014.40707
[132] A. Kuback, M.S. Diez, D. Rojo et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports 4. (2014. 4134
[133] J. Kiwi, S. Rtimi. Mechanisms of the antibacterial effects of TiO2 -FeO x under solar or visible light: Schottky barriers versus surface plasmon resonance. Coatings. (2018). 8:391. https://doi.org/ 10.3390/coatings8110391
[134] X. Wu, Y.Y. Huang, Y. Kushida. et al. Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite. Free Radical Biology and Medicine 95: (2016). 74–81
[135] A. Mukhopadhyay, S. Basak, J.K. Das, S.K. Medda, K. Chattopadhyay & G. De. Ag− TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. ACS Applied Materials & Interfaces. 2(9). (2010). 2540–2546
[136] A. W. Jatoi, I.S. Kimc, Q.Q. Nid. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydrate Polymers. 207. (2019). 640-649. https://doi.org/10.1016/j.carbpol.2018.12.029
[137] P.B. Chouke, A.K. Potbhare, N. P. Meshram, M.M. Rai, K.M. Dadure, K. Chaudhary, A.R. Rai, M.F. Desimone, R.G. Chaudhary & D.T. Masram, Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism, ACS Omega, 7 (8) 2022, 6869−6884
[138] A.K. Potbhare, R.G. Chaudhary, P.B. Chouke, S. Yerpude, A. Mondal, V.N. Sonkusare, A.R. Rai, H.D. Juneja. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Materials Science and Engineering: C 99 (2019): 783-793
[139] P.V. Asha Rani, Low Kah Mun, G., M.P. Hande and S. Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano (2009). 3: 279–290
[140] P. Maheswari,S. , S.Harish, M. Navaneethan, C. Muthamizhchelvan ,S Ponnusamy, Y. Hayakawa, Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications, Materials Science and Engineering: C. 108 .( 2020).110457. https://doi.org/10.1016/j.msec.2019.110457
[141] A. Connaughton, A. Childs, S. Dylewski, & V.J. Sabesan. Biofilm disrupting technology for orthopedic implants: what’s on the horizon? Frontiers in 497 Medicine (Lausanne). (2014). 1, 22
[142] F.U. Gunputh, H. Le, K. Lawton, A. Besinis, C. Tredwin & R.D. Handy. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus, Nanotoxicology, 14:1. (2020). 97-110. https://doi.org/ 10.1080/17435390.2019.1665727
[143] S.M. Emarati & M. Mozammel. Efficient one-step fabrication of superhydrophobic nano-TiO2/TMPSi ceramic composite coating with enhanced corrosion resistance on 316L. Ceramics International. 46(2). (2020). 1652–1661. https://doi.org/10.1016/j.ceramint.2019.09.13
[144] T. Naz, A. Rasheed, S. Ajmal, N. Sarwar. T. Rasheed, M.M.Baig, M.S. Zafar, D.J. Kang, G. Dastgeer. A facile approach to synthesize ZnO-decorated titanium carbide nanoarchitectures to boost up the photodegradation performance,Ceramics International, Volume 47. 23. (2021). 33454-33462. doi.org/10.1016/j.ceramint.2021.08.252
[145] C. Chambers, S.B. Stewart, B. Su, H.F. Jenkinson, J.R. Sandy, A.J. Ireland. Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers, Dental Materials. 33.3. (2017). e115-e123.https://doi.org/10.1016/j.dental.2016.11.008
[146] A. Sodagar, S. Khalil, M.Z. Kassaee, A.S. Shahroudi, B. Pourakbari, A. Bahador. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod (2016). Sci. 5(1):7-13. https://doi.org/ 10.4103/2278-0203.176652.
[147] N.Y. Elmehbad, N.A. Mohamed, N.A. Abd El-Ghany. Evaluation of the antimicrobial and anti-biofilm activity of novel salicylhydrazido chitosan derivatives impregnated with titanium dioxide nanoparticles, International Journal of Biological Macromolecules. 205. (2022). 719-730. https://doi.org/10.1016/j.ijbiomac.2022.03.076
[148] W. McKinney,M. Jackson, T.M. Sager, T. J.S. Reynolds, B. T. Chen, A. Afshari, K. Krajnak, S. Waugh. etc., Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles. International Forum for Respiratory Research, (2012). 447-457. 24.7. doi.org/10.3109/08958378.2012.685111
[149] J. Del-Pozo, M. Crumlish, H.M. Ferguson, J.F. Turnbull. Aretrospective cross-sectional study on candidatus arthromitus associated rainbow trout gastroeuterities (RTGE) in the UK. Aquacultrue. (2009). 290:22-7
[150] Y.H. Tsuang, J.S. Sun, Y.C. Huang. et al. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artificial Organs (2008). 32: 167–174
[151] N.G. Chorianopoulos, D.S. Tsoukleris, E.Z. Panagou, P. Falaras, G. Nychas. Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol. . (2010). 28:164-70
[152] F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, … Av-Gay. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 6.5. (2010). 681–688. https://doi.org/10.1016/j.nano.2010.02.001
[153] M. Bonnet, C. Massard, P.P. Veisseire, O. Camares, K.O. Awitor, Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension. Journal of Biomaterials and Nanobiotechnology. (2015). 06 (03).213 – 224. ff10.4236/jbnb.2015.63020ff. ffhal-01829427f
[154] Y.Y. Huang, H. Choi. Y. Kushida, B. Bhayana, Y. Wang, MR. Hamblin, Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide. Antimicrob Agents Chemother. 22; (2016). 60(9):5445-53. https://doi.org/ 10.1128/AAC.00980-16
[155] S. Lyu, X. Wei, J. Chen, C. Wang, X. Wang, D. Pan, Titanium as a beneficial element for crop production. – Frontiers in Plant Science. (20178: 597. https://doi.org/ 10.3389/fpls.2017.00597
[156] L Zheng, F. Hong, S. Lu, C. Liu. Effect of nano- TiO2 on strength of naturally aged seeds and growth of spinach. – Biological Trace Element Research. (2005). 104: 83-92. https://doi.org/ 10.1385/BTER:104:1:083
[157] H. Dağhan. Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Applied Ecology and Environmental Research 16.5. (2018).:6873-6883. https://doi.org/10.15666/aeer/1605_68736883
[158] J. Lian, L. Zhao, J. Wu, H. Xiong, Y. Bao, A. Zeb, J. Tang, W. Liu. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. (2020). 239. .124794. https://doi.org/10.1016/j.chemosphere.2019.124794
[159] S.P.T. Waani, S. Irum, I. Gul, K. Yaqoob,M.S. Khalid, M.A. Manzoor, U., Noor, T., Ali S., Rizwan, M., Arshad, M., TiO2 nanoparticles dose, application method and phosphorous, levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicology and Environmental Safety. (2021). 213.111977. doi.org/10.1016/j.ecoenv.2021.111977
[160] T.C. Wang, N. Lu, J. Li and Y. Wu. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environmental Science and Technology. (2011). 45: 9301–9307
[161] B. Karnchanasest, Santisukkasaem. A preliminary study for removing Phenanthrene and Benzo(a)Pyrene from soil by nanoparticles. J Applied Sciences 7. (2007) 3317–3321
[162] R. Žabar, T. Komel, J. Fabjan et al. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere. (2012). 89: 293–301
[163] A.N. Wang, Y. Teng, X.F. Hu. et al. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degrada.tion pathway, optimization of operating parameters and effects of soil properties. The Science of the Total Environment (2016a). 541: 348–355
[164] B.F. Abramović, D.V. Šojić, V.B. Anderluh, N.D. Abazović, M.I. Čomor. Nitrogen-doped (2021). TiO2 suspensions in photocatalytic degradation of mecoprop and (4-chloro-2-methylphenoxy) acetic acid herbicides using various light sources,Desalination. 244. (2009). 1–3.293-302. https://doi.org/10.1016/j.desal.2008.06.008
[165] A. Abdelhaleem, W. Chu. Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst,Journal of Hazardous Materials.338, (2017). 491-501. https://doi.org/10.1016/j.jhazmat.2017.05.056
[166] X. Wu, J. Hu, F. Wu, X. Zhang, B. Wang, Y. Yang, G. Shen, J. Liu, S. Tao, X. Wang, Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. Journal of Hazardous Materials. 405. (2021). 124047. https://doi.org/10.1016/j.jhazmat.2020.124047
[167] T. Kiany, L. Pishkar, N. Sartipnia, A. Iranbakhsh, G. Barzin. Effects of silicon and titanium dioxide nanoparticles on arsenic accumulation, phytochelatin metabolism, and antioxidant system by rice under arsenic toxicity. Environ Sci Pollut Res Int. 2022 May;29(23):34725-34737. https://doi.org/ 10.1007/s11356-021-17927-z.
[168] M. Qi, Y. Liu,T. Li. Nano‐TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research. (2013). 156(1‐3):323-328. https://doi.org/10.1007/s12011‐013‐9833‐2
[169] S.M. Dofing. Phenological development–yield relationships in spring barley in a subarc‐ tic environment. Canadian Journal of Plant Science. (1995). 75(1):93-97. https://doi.org/ doi:10.4141/ cjps95‐015
[170] A. Mattiello, and L. Marchiol. Application of Nanotechnology in Agriculture: Assessment of TiO2 Nanoparticle Effects on Barley. Chapter 2 Book. Application of Titanium Dioxide. Eds: Magdalena Janus. (2016). https://doi.org/ 10.5772/intechopen.68710
[171] N.A. Sagar, N. Kumar, R. Choudhary, V.K. Bajpai, H. Cao, S. Shukla, S. Pareek, Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging, Food Packaging and Shelf Life. 34.(2022). 100955. doi.org/10.1016/j.fpsl.2022.100955
[172] E. Khojah, R. Sami, M. Helal, A. Elhakem, N. Benajiba, M. Alharbi, M.S. Alkaltham, Effect of Coatings Using Titanium Dioxide Nanoparticles and Chitosan Films on Oxidation during Storage on White Button Mushroom. Crystals. 11. (2021). 603. https://doi.org/10.3390/cryst11060603
[173] Z. Liu, M. Du, H. Liu, K. Zhang, X. Xu, K. Liu, Q. Liu. Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Progress in Organic Coatings. 151. (2021). 106103. https://doi.org/10.1016/j.porgcoat.2020.10610
[174] M. Helal, R. Sami, E. Khojah et al. Evaluating the coating process of titanium dioxide nanoparticles and sodium tripolyphosphate on cucumbers under chilling condition to extend the shelf-life. Sci Rep 11, (2021). 20312 https://doi.org/10.1038/s41598-021-99023-3
[175] M.A. Sani, M. Maleki. Eghbaljoo-Gharehgheshlaghi, H., Khezerlou, A., Mohammadian, E., Liu, Q., Jafari S.M. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films,Advances in Colloid and Interface Science,Volume 300 . (2022). 102593. doi.org/10.1016/j.cis.2021.102593
[176] R. Abazari A.R. Mahjou S.A. Sanati. Facile and efficient preparation of anatase titania nanoparticles in micelle nanoreactors: morphology, structure, and their high photocatalytic activity under UV light illumination. RSC Adv. 4. (2014). 56406. https://doi.org/10.1039/C4RA10018B
[177] J. Carbajo, A. Tolosana-Moranchel, J.A. Casas, et al. Analysis of photoefficiency in TiO2 aqueous suspensions: effect of titania hydrodynamic particle size and catalyst loading on their optical properties. Applied Catalysis B (2018). 221: 1–8
[178] Hamzah, Maytham & Jabbar, Abdullah, S. Mezan, A Tuama, M. Agam. Fabrications of PS/TiO2 nanocomposite for solar cells applications. AIP Conference Proceedings. (2019). 2151. 020011. 10.1063/1.5124641
[179] D.Chen, Q. Wang, R. Wang, G. Shen. Ternary oxide nanostructured materials for supercapacitors: A review. J. Mater. Chem. A. 3. (2015). 10158–10173
[180] S.K. Dhungel, J.G. Park, Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells. Renewable Energy 35 (2010). 2776-2780
[181] I.C. Maurya, S. Singh, S. Senapati, P. Srivastava & L. Bahadur. Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells. Solar Energy. 194. (2019). 952–95. https://doi.org/10.1016/j.solener.2019.10.090
[182] G.R. Mirshekari & A.P. Shirvanian. Electrochemical behavior of titanium oxide nanoparticles for oxygen reduction reaction environment in PEM fuel cells. Materials Today Energy, 9, (2018). 235–239. https://doi.org/ 10.1016/j.mtener.2018.05.015
[183] L. Kumaresan, H. Amir, G. Shanmugavelayutham, C. Viswanathan, Plasma assists titanium nitride and surface modified titanium nitride nanoparticles from titanium scraps for magnetic properties and supercapacitor applications,Ceramics International.Volume 48. (2022). Issue 20. .30393-30406. https://doi.org/10.1016/j.ceramint.2022.06.317
[184] S. Ishii, R.P. Sugavaneshwar & T. Nagao. Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers. The Journal of Physical Chemistry C. (2016). 120(4). 2343–2348. https://doi.org/10.1021/acs.jpcc.5b09604
[185] A. Achour, M. Chaker, H. Achour, A. Arman, M. Islam, M. Mardani, … T. Brousse. Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. Journal of Power Sources, 359. (2017). 349–354. https://doi.org/10.1016/j.jpowsour.2017.05.07
[186] J. Zhang, H. Hu, X. Liu, D.S. Li. Development of the applications of titanium nitride in fuel cells. Materials Today Chemistry. 11. (2019a). 42–59. https://doi.org/10.1016/j.mtchem.2018.10.005
[187] N. Parveen, M.O. Ansari, S.A. Ansari, P. Kumar, Nanostructured Titanium Nitride and Its Composites as High-Performance Supercapacitor Electrode Material. Nanomaterials. 13. (2023). 105. https://doi.org/10.3390/nano13010105
[188] A. Achour, R.L. Porto, M.A. Soussou, M. Islam, M. Boujtita,K.A. Aissa, K.A., Le Brizoual, L., Djouadi, A., T. Brousse, Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. J. Power Sources. 300. (2015). 525–532
[189] Z. Gonzalez, J. Yus, R. Moratalla B. Ferrari, Electrophoretic deposition of binder-free TiN nanoparticles to design 3D microstructures. The role of sintering in the microstructural robustness of supercapacitor electrodes.Electrochimica Acta,Volume 369,(2021),https://doi.org/10.1016/j.electacta.2020.137654
[190] H. Wang, Q. Chen, L.Wen, S. Song, X. Hu and G. Xu, Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photon. Res. 3, (2015). 329-334.
[191] E.T. Bekele, E.A. Zereffa, N.S. Gultom. D.H. Kuo, B.A. Gonfa, F.K. Sabir, “Biotemplated Synthesis of Titanium Oxide Nanoparticles in the Presence of Root Extract of Kniphofia schemperi and Its Application for Dye Sensitized Solar Cells”, International Journal of Photoenergy. 6648325. (2021). 12. https://doi.org/10.1155/2021/6648325
[192] Z. Su, D. Pan, H. Han, M. Lin, X. Hu, X. Wu, Synthesis, Properties and Application of Polyaniline/Titanium Carbide Nanoparticles Modified Electrode. Int. J. Electrochem. Sci., (2015). Vol. 10
[193] R. Syamsai, P. Kollu, S.K. Jeong, et al. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram Int. (2017). 43: 13119–13126
[194] M. Mariano, O. Mashtalir, F.Q. Antonio, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale; (2016). 8: 16371–16378
[195] A. Kumar, T. Siddiqui, S. Pandit, A. Roy, A. Gacem, A., A.A. Souwaileh, A.S. Mathuriya, T. Fatma, P. Sharma, S. Rustagi, et al. Application of Biogenic TiO2 Nanoparticles as ORR Catalysts on Cathode for Enhanced Performance of Microbial Fuel Cell. Catalysts, 13, (2023). 937. https://doi.org/10.3390/catal13060937
[196] T. Marolt, A.S. Škapin J. Bernard, P. Živec, M. Gaberšček, Photocatalytic activity of anatase-containing facade coatings. Surface and Coatings Technology.206. (2011). 6.2011.1355-1361.https://doi.org/10.1016/j.surfcoat.2011.08.053
[197] N.S. Allen, M. Edge, A. Ortega,C.M. Liauw, J. Stratton & R.B. McIntyre, Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polymer Degradation and Stability. (2002). 78(3). 467–478. https://doi.org/10.1016/s0141-3910(02)00189-1.
[198] N.S. Allen, R. McIntyre, J.M. Kerrod, Hill, C., & Edge, M. Photo-Stabilisation and UV Blocking Efficacy of Coated Macro and Nano-Rutile Titanium Dioxide Particles in Paints and Coatings. Journal of Polymers and the Environment (2018). doi:10.1007/s10924-018-1298-0.
[199] L. Ying, Y. Wu, C. Nie, C. Wu, G. Wang, Improvement of the Tribological Properties and Corrosion Resistance of Epoxy–PTFE Composite Coating by Nanoparticle Modification. Coatings. 11. (2021). 10. doi.org/10.3390/ coatings11010010
[200] D.V. Mashtalyar, S.L. Sinebryukhov, I.M. Imshinetskiy, A.S. Gnedenkov, K.V. Nadaraia, A. Ustinov & S.V. Gnedenkov, Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles. Applied Surface Science. (2019). 144062. https://doi.org/10.1016/j.apsusc.2019.144062
[201] S. Zhang, X. Liang, G.M. Gadd, Q. Zhao, Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties. Applied Surface Science, 490. (2019b). 231-241. doi.org/10.1016/j.apsusc.2019.06.070
[202] A. Khataee, L. Moradkhannejhad, V. Heydari, B. Vahid and S.W. Joo, “Self-cleaning acrylic water-based white paint modified with different types of TiO2 nanoparticles”, Pigment & Resin Technology. (2016), 45 (1). 24-29. https://doi.org/10.1108/PRT-09-2014-0070
[203] S. Chen, Y. Guo, H. Zhong, S. Chen, J. Li, Z. Ge, J. Tang, J. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles, Chemical Engineering Journal. 256.(2014)238-246. https://doi.org/10.1016/j.cej.2014.07.006
[204] V.S. Mohite, M.M. Darade, R.K. Sharma, S.H. Pawar, Nanoparticle Engineered Photocatalytic Paints: A Roadmap to Self-Sterilizing against the Spread of Communicable Diseases. Catalysts. 12. (2022). 326. doi.org/ 10.3390/catal12030326
[204] P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Materials Today Advances, 16 (2022) 100314
[206] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A.R. Rai, H.D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ -Bi2O3 microspindles, Nano-Structures & Nano-Objects, 13 (2018), 121-131
[207] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, R.K. Mishra, H.D. Juneja A.A. Abdala Mesoporous Octahedron-Shaped Tricobalt Tetroxide Nanoparticles for Photocatalytic Degradation of Toxic Dyes, ACS Omega, 5 (2020), 7823-7835
[208] M.S. Nagmote, A.R. Rai, R. Sharma, M.F. Desimone, R.G. Chaudhary, N.B. Singh, Bioremediation of heavy metals using microorganisms, CRC Press, 2024, pp. 168-190
[209] K. Ancy, C. Vijilvani, M.R. Bindhu, S.J.S.c Bai, K.S. Almaary, T.M. Dawoud, ., … M.S. Alfadul, Visible light assisted photocatalytic degradation of commercial dyes and waste water by Sn–F co-doped titanium dioxide nanoparticles with potential antimicrobial application. Chemosphere, 277, (2021). 130247. https://doi.org/10.1016/j.chemosphere.2021.13
[210] T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B, J. Colloid Interface Sci. 362. (2011).337-334
[211] N.R. Nicomel, K. Folens, P.V.D. Voort, G.D. Laing, Technologies for arsenic removal fromWater: current status and future perspectives, Int. J. Environ. Res. Public Health. (2015) 13 (1) 62
[212] X. DingG. Li, S. Zhang, J. Chen, J. Yuan, Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity, J. Colloid Interface Sci. 320 (2008) 501–507
[213] L. Xiea, Z. Zheng, S. Weng, J. Huanga et al., Morphology engineering of V2O5/ TiO2 nanocomposites withenhanced visible light-driven photofunctions for arsenic removal, Environ. Appl. Catal. B 184 (2016) 347–354
[214] M. Sadegh, M. Irandoust, F. Khorshidi, M. Feyzi, Removal of Arsenic (III) from natural contaminated water using magnetic nanocomposite: kinetics and isotherm studies, J. Iran. Chem. Soc. (2016 )7 (13) 1175–1188
[215] R.K. Khan, A.A. Farghaly, T.A., Silva, D. Ye & M.M. Collinson, Gold Nanoparticle-Decorated Titanium Nitride Electrodes Prepared by Glancing Angle Deposition for Sensing Applications. ACS Applied Nano Materials. (2019). https://doi.org/10.1021/acsanm.8b02354
[216] N. Akhtary and A. Zubair, Titanium nitride based plasmonic nanoparticles for photovoltaic application. (2023). 2. (7) Optics Continuum 1702. https://doi.org/10.1364/OPTCON.493184
[217] I. Zelepukin, A. Popov, V. Shipunova, G. Tikhonowski, A.B. Mirkasymov, et al. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Materials Science and Engineering: C.120. (2021). 111717.
[218] U. Guler, J.C. Ndukaife, G.V Naik, A.G.A.N., Nnanna, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Local heating with titanium nitride nanoparticles. (2013). CLEO: Technical Digest
[219] X. Yuan, L. Cheng, L. Kong, X. Yin, & L. Zhang, Preparation of titanium carbide nanowires for application in electromagnetic wave absorption. Journal of Alloys and Compounds. 596. (2014). 132–139. https://doi.org/10.1016/j.jallcom.2014.01.022
[220] H. Feng, W. Wang, M. Zhang, S. Zhu, Q. Wang,J. Liu & S. Chen, 2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications. Applied Catalysis B: Environmental. 266. (2020). 118609. https://doi.org/10.1016/j.apcatb.2020.118609
[221] A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Synthesis of Novel (Polymer Blend-Titanium Carbide) Nanocomposites and Studying their Characterizations for Piezoelectric Applications. Journal of University of Babylon. Pure and Applied Sciences. (2018). Vol. (26-6)
[222] V.I. Zakomirnyi, I.L. Rasskazov, V.S. Gerasimov, A.E. Ershov, S.P. Polyutov, S.V. Karpov & H. Ågren, Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges. Photonics and Nanostructures – Fundamentals and Applications. 30. (2018). 50–56. https://doi.org/10.1016/j.photonics.2018.04.0
[223] X. Hu, Y. Wang, M. Xu, L. Zhang, J. Zhang, J., W. Dong, Development of photocrosslinked salecan composite hydrogel embedding titanium carbide nanoparticles as cell scaffold. International Journal of Biological Macromolecules 123. (2019). 549–557. https://doi.org/10.1016/j.ijbiomac.2018.11.125.
[224] Zong, L., H. Wu, H. Lin, et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 11, (2018). 4149–4168 doi.org/10.1007/s12274-018-2002-3
[225] A. Schlange, A.R. dos Santos, B. Hasse, B. J.M. Etzold, U. Kunz & T. Turek, Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application. Journal of Power Sources. 199. (2012). 22–28. https://doi.org/10.1016/j.jpowsour.2011.09.107
[226] A. Hashim, Z. Hamad, A. Hashim & Z. Hamad, Humidity Sensing Performance of Polymer Blend-Titanium Nitride Nanocomposites: Structural, Electrical, and Optical Properties. 19. (2021). 893–903
[227] Sood A., Desseigne, M., Dev, A., Maurizi, L., Kumar, A., et al., A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. Small, (2023). 19 (12). 2206401.
[228] A.A. Shah, A. Khan, S. Dwivedi, J. Musarrat, A. Azam, Antibacterial and Antibiofilm Activity of Barium Titanate Nanoparticles. Materials Letters.229 (2018) .130-133.https://doi.org/10.1016/j.matlet.2018.06.107