Quantum dots: Green synthesis, characterizations and applications
Yogita Sahu, Sunita Sanwaria, R.M. Patel, Md. Abu Bin Hasan Susan, Ajaya K. Singh
Quantum dots (QDs) are a fascinating domain of modern research. The nanoscale dimension of QD semiconductors determines their optical and electrical characteristics to make them appealing for diverse applications, which inter alia include: electronics, biotechnology, energy, and photonics. Syntheses of QDs commonly use chemical, green synthesis, and microwave-assisted methods. Characterizations using electron microscopy, x-ray diffraction; spectroscopy, etc. provide insights into their unique properties. QDs find applications in displays, biological imaging, sensing, photovoltaics, solid-state lighting, and hold promise for quantum computing. Research is underway to enhance their properties, deal with toxicity issues, and explore new applications. QDs have so far been a remarkable category of nanomaterials with enormous potential for scientific and technological breakthroughs.
Keywords
Quantum dots; Green Method, Bioinspired Synthesis, Chemical Method, Spectral Characterization
Published online 10/20/2024, 40 pages
Citation: Yogita Sahu, Sunita Sanwaria, R.M. Patel, Md. Abu Bin Hasan Susan, Ajaya K. Singh, Quantum dots: Green synthesis, characterizations and applications, Materials Research Foundations, Vol. 169, pp 249-274, 2024
DOI: https://doi.org/10.21741/9781644903261-10
Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials
References
[1] M. C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews 104 (2004) 293-346. https://doi.org/10.1021/cr030698+
[2] T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanoscience and Nanotechnology 2 (2012) 22-48. https://doi.org/10.5923/j.nn.20120203.01
[3] V. A. Basiuk, E.V. Basiuk, Green Processes for Nanotechnology. 1st ed. Mexico DF, MX: Springer, (2015) 434. https://doi.org/10.1007/978-3-319-15461-9
[4] D. Hines, P.V. Kamat, Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Interfaces, 6 (5) (2014) 3041-3057. https://doi.org/10.1021/am405196u
[5] A. S. Karakoti, R. Shukla, R. Shanker, S. Singh, Surface Functionalization of Quantum Dots for Biological Applications. Advance Colloid Interface Science 215(2015)28-45. https://doi.org/10.1016/j.cis.2014.11.004
[6] A.K. Potbhare, S.K. Tarik Aziz, M.M. Ayyub, A. Kahate, R. Madankar, S. Wankar, A. Dutta, A.A. Abdala, H.M. Sami, R. Adhikari, R.G. Chaudhury, Bioinspired Graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review, Nanoscale Advances, 6 (2024) 2539-2568. https://doi.org/10.1039/D3NA01071F
[7] P. Pierobon, G. Cappello, Quantum dots to tail single bio-molecules inside living cells, Advanced Drug Delivery Reviews 64 (2012) 167-178. https://doi.org/10.1016/j.addr.2011.06.004
[8] A. I. Ekimov, A.L. Efros, A.A. Onushchenko, Quantum Size Effect in Semiconductor Microcrystals. Solid State Communication, 56 (1985)921-924. https://doi.org/10.1016/S0038-1098(85)80025-9
[9] W. Liu, S. Zhang, L. Wang, C. Qu, C. Zhang, L. Hong, L. Yuan, Z. Huang, Z. Wang, S. Liu, G. Jiang, CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice. PLoS ONE 6 (2011) 24406. https://doi.org/10.1371/journal.pone.0024406
[10] R.G. Chaudhary, A.K. Potbhare, P.B. Chouke, A.R. Rai, R.K. Mishra, M.F. Desimone, A.A. Abdala, Graphene-based materials and their nanocomposites with metal oxides: biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Magnetic Oxides and Composites II, Materials Research Foundation, 83 (2020), pp. 79-116. https://doi.org/10.21741/9781644900970-4
[11] K. Shivaji, S. Mani, P. Ponmurugan, C. De Castro, M. Lloyd Davies, M. Balasubramanian, S. Pitchaimuthu, Green Synthesis Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging and Therapeutic Applications in Lung Cancer Cell. ACS Applied Nano Materials 4 (2018) 1683-1693. https://doi.org/10.1021/acsanm.8b00147
[12] N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, C. Fan, The cytotoxicity of cadmium-based quantum dots. Biomaterials 33 (2012) 1238-44. https://doi.org/10.1016/j.biomaterials.2011.10.070
[13] K.G. Li, J.T. Chen, S.S. Bai, X. Wen, S.Y. Song, Q. Yu, J. Li, Y. Q. Wang, Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicology in vitro: an international journal published in association with BIBRA 23 (2009)1007-13. https://doi.org/10.1016/j.tiv.2009.06.020
[14] Y. Sahu, A.Hashmi, R. Patel, A.K. Singh, M.A.B. H. Susan, S.A.C. Carabineiro, Potential Development of N-doped carbon dots and metal- Oxide Carbon dot Composites for Chemical and Biosensing, Nanomaterials 12(2022) 3434. https://doi.org/10.3390/nano12193434
[15] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals. Nature 408 (2000) 440-444. https://doi.org/10.1038/35044012
[16] Y. He, S. Su, T. Xu, Y. Zhong, J.A. Zapien, J. Li, C. Fan, S.T. Lee, “Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection,” Nano Today 6 (2011) 122-130. https://doi.org/10.1016/j.nantod.2011.02.004
[17] Y. Zhong, F. Peng, X. Wei, Y. Zhou, J. Wang, X. Jiang, Y. Su, S. Su, S. T. Lee, Y. He, Microwave Assisted Synthesis of Biofunctional and Fluorescent Silicon Nanoparticles Using Proteins as Hydrophilic Ligands. Angewandte Chemie International edition, 51 (2012) 8485- 8489. https://doi.org/10.1002/anie.201202085
[18] A.K. Potbhare, M.S. Umekar, P.B. Chouke, M.B. Bagade, S.T. Aziz, A. A. Abdala, R.G. Chaudhary, Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity. Materials Today: Proceedings, 29 (2020) 720-725. https://doi.org/10.1016/j.matpr.2020.04.212
[19] M.S. Umekar, G.S. Bhusari, A.K. Potbhare, A. Mondal, B.P. Kapgate, M.F. Desimone, R.G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotechnol., 22(13) (2021) 1759-1781. https://doi.org/10.2174/1389201022666201231115826
[20] Y. Su, X. Wei, F. Peng, Y. Zhong, Y. Lu, S. Su, T. Xu, S.T. Lee, Y. He, Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Letters 12 (2012) 1845-1850. https://doi.org/10.1021/nl204203t
[21] Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.T. Lee, Y. He, Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes journal of the American Chemical Society 135 (2013) 8350-8356. https://doi.org/10.1021/ja4026227
[22] Z. M. Alvanda , H. R. Rajabia, A. Mirzaeib, A. Masoumiaslc , H. Sadatfarajid, Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study, Materials Science & Engineering C 98 (2019) 535-544. https://doi.org/10.1016/j.msec.2019.01.010
[23] S. Angizi, A. Hatamie, H. Ghanbari, A. Simchi, Mechanochemical Green Synthesis of Exfoliated Edge-Functionalized Boron Nitride Quantum Dots: Application to Vitamin C Sensing through Hybridization with Gold Electrodes, ACS Applied Materials & Interfaces 34 (2018) 28819-28827 https://doi.org/10.1021/acsami.8b07332
[24] P.R. Bhilkar, R.S. Madankar, T.S. Shrirame, R.D. Utane, A.K. Potbhare, S. Yerpude, R.G. Chaudhary, Functionalized carbon nanomaterials: fabrication, properties, and applications. Materials. Research Foundation, 135 (2022) pp. 55-82.
[25] G. B. Smith, C.G. Granqvist, Green Nanotechnology: Introduction and Invitation. In: Smith G.B., Granqvist C.G., editors. Green Nanotechnology: Solutions for Sustainabil‐ ity and Energy in the Built Environment. 1st ed. Boca Raton, FL: Taylor & Francis Group 2010) 1-4.
[26] W. J. Parak, A.E. Nel, P.S. Weiss, Grand Challenges for Nanoscience and Nanotechnol‐ ogy. ACS Nano 9 (2015) 6637-6640. https://doi.org/10.1021/acsnano.5b04386
[27] M. S. Umekar, G.S. Bhusari, T. Bhoyar, V. Devthade, B.P. Kapgate, A. K. Potbhare, R.G. Chaudhary, A.A. Abdala, Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants. Current Nanoscience, 19(2) (2023)148-169. https://doi.org/10.2174/1573413718666220127123935
[28] Y. Pu, F. Cai, D. Wang, J.X. Wang, J. F, Chen, Colloidal Synthesis of Semiconductor Quantum Dots toward Large-Scale Production: A Review. Industrial & Engineering Chemistry Research, 57(6) (2018) 1790-1802. https://doi.org/10.1021/acs.iecr.7b04836
[29] S. D. Hiremath, M. Banerjee, A. Chatterjee, Review of 2D MnO2 Nanosheets as FRET-Based Nanodot Fluorescence Quenchers in Chemosensing Applications. ACS Applied Nano Materials, 5 (2022) 17373-17412. https://doi.org/10.1021/acsanm.2c03470
[30] J. Zhang, W. Xu, L. Wang, Z. Zheng, F. Liu, P. Yu, G. Yang, Colossal Vacancy Effect of 2D CuInP2S6 Quantum Dots for Enhanced Broadband Photodetection. Crystal Growth & Design, 23 (2023)1259-1268. https://doi.org/10.1021/acs.cgd.2c01404
[31] F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong, H. Zhong, Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects. Chemistry of Materials, 29(8) (2017) 3793-3799. https://doi.org/10.1021/acs.chemmater.7b01100
[32] H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang, C. Zhang, Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry, 39 (2015) 8492-8497. https://doi.org/10.1039/C5NJ01698C
[32] D. S. Sajinović, Z.V. Saponjić, N. Cvjetićanin, M. Marinović-Cincović, J. M. Nedeljkovic, Synthesis and characterization of CdS quantum dots-polystyrene composite. Chemical Physics Letters, 329(2000)168-172. https://doi.org/10.1016/S0009-2614(00)00990-8
[33] S. Chen, M. Ahmadiantehrani, N.G. Publicover, K.W. Jr. Hunter, X. Zhu, Thermal decomposition based synthesis of Ag-In-S/ZnS quantum dots and their chlorotoxin-modified micelles for brain tumor cell targeting. RSC Advances, 5 (2015) 60612-60620. https://doi.org/10.1039/C5RA11250H
[34] T. Lutz, A. MacLachlan, A. Sudlow, J. Nelson, M.S. Hill, K.C. Molloy, S.A. Haque, Thermal decomposition of solution processable metal xanthates on mesoporous titanium dioxide films: a new route to quantum-dot sensitised heterojunctions. Physical Chemistry Chemical Physics, 14(2012)16192-16196. https://doi.org/10.1039/c2cp43534a
[35] S.V. Nistor, D. Ghica, M. Stefan, L.C. Nistor, “Sequential Thermal Decomposition of the Shell of Cubic ZnS/Zn(OH)2 Core-Shell Quantum Dots Observed With Mn2+ Probing Ions.” Journal of Physical Chemistry C, 117 (2013) 22017-22028. https://doi.org/10.1021/jp4063093
[36] W. Fan, H. Zhang, W. Lu, X. Li. “Synthesis of ZnO/CuO composite coaxial nanoarrays by combined hydrothermal-solvothermal method and potential for solar cells.” Journal of Composite Materials, 49 (2015) 1201-1209. https://doi.org/10.1177/0021998314541311
[37] Ren, X., Zhang, Y., Li, H., Wang, H., & Chen, X. (Year). Uniform MoS2 Quantum Dots Prepared via a Hydrothermal-Solvothermal Cutting Integrated Route. Journal of Nanoscience and Nanotechnology, 18 (2018) 7071-7075.
[38] F. Wu, H. Zhang, X. Li, Synthesis of ZnO/CuO composite coaxial nanoarrays by combined hydrothermal-solvothermal method and potential for solar cells, Journal of Composite Materials 49 (2014) 1-6. https://doi.org/10.1177/0021998314541311
[39] D. Sajinovic, Z. Saponjic, N. Cvjeticanin, M. Marinovic-Cincovic, Synthesis and characterization of CdS quantum dots-polystyrene composite. Chemical Physics Letters 329 (2000) 168-172. https://doi.org/10.1016/S0009-2614(00)00990-8
[40] R.G. Chaudhary, A.K. Potbhare, S.T. Aziz, M.S. Umekar, S.S. Bhuyar, A. Mondal, Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Materials Today: Proceedings, 36 (2021) 756-762. https://doi.org/10.1016/j.matpr.2020.05.821
[41] R. Mahle, P. Kumbhakar, D. Nayar, T. N. Narayanan, K. K. Sadasivuni, C. S. Tiwary, R. Banerjee. Current advances in bio-fabricated quantum dots emphasizing the study of mechanisms to diversify their catalytic and biomedical applications. Dalton Transactions, 50(2021) 14062-14080. https://doi.org/10.1039/D1DT01529J
[42] Mi.Congcong, Y. Wang, J. Zhang, H. Huang, L. Xu, S. Wang. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. Journal of Biotechnology, 153 (2011) 125-132. https://doi.org/10.1016/j.jbiotec.2011.03.014
[43] R. P. Singh, A.R. Rai, A.A. Abdala, R.G. Chaudhary, Biogenic Sustainable Nanotechnology: Trends and Progress, Elsevier, Amsterdam, Netherland, 2022, pp.1-391.
[44] Y. Cheng ,S.D. Ling, Y. Geng, Y. Wang, J. Xu. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging.” Nanoscale Advances, 3 (2021) 2180-2195. https://doi.org/10.1039/D0NA00933D
[45] H. Bao, Z. Lu, X. Cui, Y. Qiao, J. Guo, J.M. Anderson, C.M. Li. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomaterialia, 6, 9 (2010) 3534-3541. https://doi.org/10.1016/j.actbio.2010.03.030
[46] C. Mi, Y. Wang, J. Zhang, H. Huang, L. Xu, S. Wang, X. Fang, J. Fang, C. Mao, S. Xu/ Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. Journal of Biotechnology 153, 3-4 (2011)125-132. https://doi.org/10.1016/j.jbiotec.2011.03.014
[47] T. Mohammad, H. Alijani, P. Faris, E. Salarkia, M. Naderifar, M. R. Akbarizadeh, N. Hashemi, S. Iravani, A. T. Jalil, M. M. Saleh, A. Fathi, M. Khatami , Plant-mediated synthesis of sphalerite (ZnS) quantum dots, Th1-Th2 genes expression and their biomedical applications, South African Journal of Botany, 155 (2023) 127-139 https://doi.org/10.1016/j.sajb.2023.01.041
[48] J. Mal, Y.V. Nancharaiah, E. D. van Hullebusch, P.N. L. Lens, Metal chalcogenide quantum dots: biotechnological synthesis and applications.” RSC Advances, 6 (2016) 41477-41495. https://doi.org/10.1039/C6RA08447H
[49] S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, Journal of Advanced Research 7( 2016) 17-28. https://doi.org/10.1016/j.jare.2015.02.007
[50] Z. M. Alvand, H. R. Rajabi, A. Mirzaei, A. Masoumiasl, Ultrasonic and microwave assisted extraction as rapid and efficient techniques for plant mediated synthesis of quantum dots: green synthesis, characterization of zinc telluride and comparison study of some biological activities, New Journal of Chemistry 43 (2019) 15126-15138. https://doi.org/10.1039/C9NJ03144H
[51] N. Pugazhenthiran , S. Murugesan , T. Muneeswaran c, S. Suresh d, M. Kandasamy, H. Valdés, M. Selvaraj, A. Dennyson Savariraj, R.V. Mangalaraja, Biocidal activity of citrus limetta peel extract mediated green synthesized silver quantum dots against MCF-7 cancer cells and pathogenic bacteria, Journal of Environmental Chemical Engineering, 9 (2021)105089 https://doi.org/10.1016/j.jece.2021.105089
[52] Y. Wang, X. He, K. Wang, X. Zhang, W. Tan, Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in in electrochemistry, Colloids Surf B Biointerfaces, 73(2009) 75-79. https://doi.org/10.1016/j.colsurfb.2009.04.027
[53] R.K. Singh a, R. Kumar b, D.P. Singh c, R. Savu d, S.A. Moshkalev d, Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review, Materials Today Chemistry 12 (2019) 282-314. https://doi.org/10.1016/j.mtchem.2019.03.001
[54] A. Kumar, Y. Kuang, Z. Liang, X. Sun, Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review, Materials Today Nano 11 (2020) 100076. https://doi.org/10.1016/j.mtnano.2020.100076
[55] M. Liu, Y. Bai, Y. He, J. Zhou, Y. Ge, J. Zhou, G. Song, Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite, Microchimica Acta volume 188 (2021) 15. https://doi.org/10.1007/s00604-020-04668-y
[56] J. R. R. Mendez, J. Matos, F. Luis, C. Ruiz, Ana C. González-Castillo, G. B. Yáñez, Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells, Applied Surface Science, 434, 15 (2018) 744-755 https://doi.org/10.1016/j.apsusc.2017.10.236
[57] L. Zhu, M. Wang, T. K. Lam, C. Zhang, H. Du, B. Li, Y. Yao, Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity Sensors and Actuators B: Chemical, 236 ( 2016) 646-653. https://doi.org/10.1016/j.snb.2016.04.173
[58] A. Barras, S. Cordier, M. R. Das R. Boukherroub, Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2− cluster units under sun light irradiation, Applied Catalysis B: Environmental, 123-124 (2012) 1-8 https://doi.org/10.1016/j.apcatb.2012.04.006
[59] R. Devarapalli, M. V. Shelke, S. Cordier, S. Szunerits, Rabah Boukherroub, One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity, Applied Catalysis B: Environmental, 130-131 (2013) 270-276 https://doi.org/10.1016/j.apcatb.2012.11.017
[60] M. S. Umekar, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, M. Sami, Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract. Materials Today: Proceedings, 29 (2020) 709-714. https://doi.org/10.1016/j.matpr.2020.04.169
[61] H.Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits, R. Boukherroub, Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light, Journal of Colloid and Interface Science, 1 (2016) 286-294 https://doi.org/10.1016/j.jcis.2015.12.001
[62] J. M. Baruah, S. Kalita, J. Narayan, Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent, International Nano Letters, (2019)149-159. https://doi.org/10.1007/s40089-019-0270-x
[63] J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek.”Quantum Dots – Characterization, Preparation and Usage in Biological Systems. International Journal of Molecular Sciences 10(2009) 656-673. https://doi.org/10.3390/ijms10020656
[64] A. Foerster, A. Nicholas , A. Besley. “Quantum Chemical Characterization and Design of Quantum Dots for Sensing Applications”, Journal of Physical Chemistry A, 126(2022) 2899-2908. https://doi.org/10.1021/acs.jpca.2c00947
[65] B. K. John, T. Abraham, B. Mathew. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection, Journal of Fluorescence 32 (2022) 449-471. https://doi.org/10.1007/s10895-021-02852-8
[66] M. Umekar, R.G. Chaudhary, G.S. Bhusari, A.K. Potbhare, Fabrication of zinc oxide-decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum. Emerging Materials Research, 10(1) (2021) 75-84. https://doi.org/10.1680/jemmr.19.00175
[67] A.A. H. Abdellatif, M.A. Younis, M. Alsharidah,O. Al Rugaie, H.M. Tawfeek, Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential, 17(2022) 1951-1970. https://doi.org/10.2147/IJN.S357980
[68] W.A. A. Mohamed, H. A. El-Gawad, S. Mekkey , H. Galal , H. Handal , H. Mousa, Ammar Labib, Quantum dots synthetization and future prospect applications, Journal Nanotechnology Reviews 10 (2021)1926-1940. https://doi.org/10.1515/ntrev-2021-0118
[69] X. Gong, Z. Yang ,G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E.H. Sargent, Highly efficient quantum dot near-infrared light-emitting diodes. Nature Photon. 10(2016) 253-257. https://doi.org/10.1038/nphoton.2016.11
[70] G. J. Supran, K.W. Song, G.W. Hwang, R. E Correa, J. Scherer, E.A.Dauler, Y. Shirasaki,M.G. Bawendi, V. Bulovi? 2015. High-Performance Shortwave-Infrared Light-Emitting Devices Using Core-Shell (PbS-CdS) Colloidal Quantum Dots. Advance Materials 27(2015) 1437-1442. https://doi.org/10.1002/adma.201404636
[71] S.A.Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, 2016. Perovskite Materials for Light-Emitting Diodes and Lasers. Advance Material 28(2016)6804-6834. https://doi.org/10.1002/adma.201600669
[72] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, 2015. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advance material 27(2015)7162-7167. https://doi.org/10.1002/adma.201502567
[73] X. Dai, Z. Zhang, Y. Jin, Y.Niu, H.Cao, X. Liang, L.Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(2014) 96-99. https://doi.org/10.1038/nature13829
[74] O.Chen, J. Zhao,V.P. Chauhan, J. Cui, C. Wong, D.K. Harris,H. Wei H, Han, D. Fukumura, R.K. Jain, 2013. Compact high-quality CdSe/ CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Materials 12(2013) 445-451. https://doi.org/10.1038/nmat3539
[75] T. O’Hara, B. Seddon, A. O’Connor, S. McClean, B. Singh, E. Iwuoha, X. Fuku, E. Dempsey, Quantum dot nanotoxicity investigations using human lung cells and TOXOR electrochemical enzyme assay methodology. ACS Sensors 2 (2017) 165-171. https://doi.org/10.1021/acssensors.6b00673
[76] M. Allocca, L. Mattera, A. Bauduin, B. Miedziak, M. Moros, L. De Trizio, A. Tino, P. Reiss, A. Ambrosone, C. Tortiglione, An integrated multilevel analysis profiling biosafety and toxicity onduced by indium- and cadmium-based quantum dots in vivo. Environmental Science and Technology, 53(2019) 3938-3947. https://doi.org/10.1021/acs.est.9b00373
[77] E. Yaghini, H. Turner, A. Pilling, I. Naasani, A.J. MacRobert, In vivo biodistribution and toxicology studies of cadmium-free indium-based quantum dot nanoparticles in a rat model. Nanomedicine Nanotechnology Biology Medicine 14(2018) 2644-2655. https://doi.org/10.1016/j.nano.2018.07.009
[78] A. Tarantini, K.D.Wegner,F. Dussert, G. Sarret, D. Beal, L. Mattera, C. Lincheneau, O. Proux, D. Truffier-Boutry, C. Moriscot, Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact. 14 (2019) 100168. https://doi.org/10.1016/j.impact.2019.100168
[79] J.M. Yang, X.W. Hu,Y.M. Liu, W. Zhang, Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous Mesoporous Materials 274(2019)149-154. https://doi.org/10.1016/j.micromeso.2018.07.042
[80] X. Ren, J. Wei, J. Ren, L. Qiang, F.Tang, X. Meng, A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots. Colloids Surfaces B Biointerfaces. 125 (2014) 90-95. https://doi.org/10.1016/j.colsurfb.2014.11.007
[81] G. Jiang, T. Jiang, H. Zhou, J. Yao, X. Kong, Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advance 5 (2015) 9064-9068. https://doi.org/10.1039/C4RA16773B