Eco-friendly synthesis of silica nanoparticles and their applications

$40.00

Eco-friendly synthesis of silica nanoparticles and their applications

Gabriel O. Ostapchuk, Natalia A. Scilletta, Hernán Levy, Martín F. Desimone, Paolo N. Catalano

Since their discovery, silica nanoparticles have become valuable materials with wide-ranging applications in biomedicine, catalysis, and environmental remediation. Their properties, including high surface area, variable pore size, surface reactivity, stability, and low toxicity, make them attractive for several fields. Methods such as laser ablation and sol-gel synthesis, which encompass both physical and chemical processes, can be employed for their synthesis. However, these conventional approaches have drawbacks, including the use of dangerous chemical and costly procedures, which can lead to biological and environmental concerns. Growing demand has been observed in recent years for eco-friendly synthesis of silica nanoparticles which is economically-viable, safe, reliable, scalable, and enables control over particle size distribution. Green synthesis methods have gained importance owing to their ability to minimize the adverse effects associated with conventional approaches. The key advantage of these sustainable strategies is the absence of harmful byproducts throughout the synthesis. Utilizing biological, renewable, and sustainable resources, green strategies offer simple and cost-effective routes for producing silica nanoparticles, removing or decreasing the need for complex and time-consuming procedures. This chapter discusses various green synthesis approaches for obtaining silica nanoparticles and explores their applications. The utilization of green methods promotes the sustainable production of silica nanoparticles and advances the field of green nanotechnology.

Keywords
Silica Nanoparticles, Green Synthesis, Sustainable Resources, Biomedical Applications, Catalysis, Environmental Remediation

Published online 10/20/2024, 34 pages

Citation: Gabriel O. Ostapchuk, Natalia A. Scilletta, Hernán Levy, Martín F. Desimone, Paolo N. Catalano, Eco-friendly synthesis of silica nanoparticles and their applications, Materials Research Foundations, Vol. 169, pp 1-34, 2024

DOI: https://doi.org/10.21741/9781644903261-1

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] S. Malik, K. Muhammad, y Y. Waheed, «Nanotechnology: A Revolution in Modern Industry», Molecules, vol. 28, n.o 2, p. 661, ene. 2023. https://doi.org/10.3390/molecules28020661
[2] I. Hussain, N. B. Singh, A. Singh, H. Singh, y S. C. Singh, «Green synthesis of nanoparticles and its potential application», Biotechnol. Lett., vol. 38, n.o 4, pp. 545-560, abr. 2016. https://doi.org/10.1007/s10529-015-2026-7
[3] H. M. E. Azzazy, M. M. H. Mansour, T. M. Samir, y R. Franco, «Gold nanoparticles in the clinical laboratory: principles of preparation and applications», Clin. Chem. Lab. Med. CCLM, vol. 50, n.o 2, ene. 2012. https://doi.org/10.1515/cclm.2011.732
[4] K. Maekawa et al., «Drop-on-demand laser sintering with silver nanoparticles for electronics packaging», IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, n.o 5, pp. 868-877, 2012
[5] P. Sanguansri y M. A. Augustin, «Nanoscale materials development – a food industry perspective», Trends Food Sci. Technol., vol. 17, n.o 10, pp. 547-556, oct. 2006. https://doi.org/10.1016/j.tifs.2006.04.010
[6] F. K. Alanazi, A. A. Radwan, y I. A. Alsarra, «Biopharmaceutical applications of nanogold», Saudi Pharm. J., vol. 18, n.o 4, pp. 179-193, oct. 2010. https://doi.org/10.1016/j.jsps.2010.07.002
[7] J. Virkutyte y R. S. Varma, «Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization», Chem Sci, vol. 2, n.o 5, pp. 837-846, 2011. https://doi.org/10.1039/C0SC00338G
[8] V. Bansal, A. Ahmad, y M. Sastry, «Fungus-Mediated Biotransformation of Amorphous Silica in Rice Husk to Nanocrystalline Silica», J. Am. Chem. Soc., vol. 128, n.o 43, pp. 14059-14066, nov. 2006. https://doi.org/10.1021/ja062113+
[9] S. Bettini, A. Santino, L. Valli, y G. Giancane, «A smart method for the fast and low-cost removal of biogenic amines from beverages by means of iron oxide nanoparticles», RSC Adv., vol. 5, n.o 23, pp. 18167-18171, 2015. https://doi.org/10.1039/C5RA01699A
[10] A. S. Taleghani et al., «Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review», J. Mol. Liq., vol. 328, p. 115417, abr. 2021. https://doi.org/10.1016/j.molliq.2021.115417
[11] J. G. Croissant, K. S. Butler, J. I. Zink, y C. J. Brinker, «Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications», Nat. Rev. Mater., vol. 5, n.o 12, pp. 886-909, sep. 2020. https://doi.org/10.1038/s41578-020-0230-0
[12] D. L. Green, J. S. Lin, Y.-F. Lam, M. Z.-C. Hu, D. W. Schaefer, y M. T. Harris, «Size, volume fraction, and nucleation of Stober silica nanoparticles», J. Colloid Interface Sci., vol. 266, n.o 2, pp. 346-358, oct. 2003. https://doi.org/10.1016/S0021-9797(03)00610-6
[13] C. Xu, Y. Niu, A. Popat, S. Jambhrunkar, S. Karmakar, y C. Yu, «Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery», J Mater Chem B, vol. 2, n.o 3, pp. 253-256, 2014. https://doi.org/10.1039/C3TB21431A
[14] R. K. Kankala et al., «Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles», Adv. Mater., vol. 32, n.o 23, p. 1907035, jun. 2020. https://doi.org/10.1002/adma.201907035
[15] N. Pal, J.-H. Lee, y E.-B. Cho, «Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles», Nanomaterials, vol. 10, n.o 11, p. 2122, oct. 2020. https://doi.org/10.3390/nano10112122
[16] S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B. S. Varnamkhasti, y A. A. Saboury, «Mesoporous silica nanoparticles for therapeutic/diagnostic applications», Biomed. Pharmacother., vol. 109, pp. 1100-1111, ene. 2019. https://doi.org/10.1016/j.biopha.2018.10.167
[17] D. Xia, D. Li, Z. Ku, Y. Luo, y S. R. J. Brueck, «Top-Down Approaches to the Formation of Silica Nanoparticle Patterns», Langmuir, vol. 23, n.o 10, pp. 5377-5385, may 2007. https://doi.org/10.1021/la7005666
[18] M. C. Gonçalves, «Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products», Molecules, vol. 23, n.o 8, p. 2021, ago. 2018. https://doi.org/10.3390/molecules23082021
[19] S. Amoruso et al., «Generation of silicon nanoparticles via femtosecond laser ablation in vacuum», Appl. Phys. Lett., vol. 84, n.o 22, pp. 4502-4504, may 2004. https://doi.org/10.1063/1.1757014
[20] M. Y. Kirillin et al., «Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography», Laser Phys., vol. 25, n.o 7, p. 075604, jul. 2015. https://doi.org/10.1088/1054-660X/25/7/075604
[21] M. Kobayashi, S.-M. Liu, S. Sato, H. Yao, y K. Kimura, «Optical Evaluation of Silicon Nanoparticles Prepared by Arc Discharge Method in Liquid Nitrogen», Jpn. J. Appl. Phys., vol. 45, n.o 8A, pp. 6146-6152, ago. 2006. https://doi.org/10.1143/JJAP.45.6146
[22] B. M. Goortani, P. Proulx, S. Xue, y N. Y. Mendoza-Gonzalez, «Controlling nanostructure in thermal plasma processing: Moving from highly aggregated porous structure to spherical silica nanoparticles», Powder Technol., vol. 175, n.o 1, pp. 22-32, jun. 2007. https://doi.org/10.1016/j.powtec.2007.01.014
[23] Y. V. Kargina et al., «Silicon Nanoparticles Prepared by Plasma‐Assisted Ablative Synthesis: Physical Properties and Potential Biomedical Applications», Phys. Status Solidi A, vol. 216, n.o 14, p. 1800897, jul. 2019. https://doi.org/10.1002/pssa.201800897
[24] R. S. Dubey, Y. B. R. D. Rajesh, y M. A. More, «Synthesis and Characterization of SiO2 Nanoparticles via Sol-gel Method for Industrial Applications», Mater. Today Proc., vol. 2, n.o 4-5, pp. 3575-3579, 2015. https://doi.org/10.1016/j.matpr.2015.07.098
[25] R. Sun, J. Zhou, y W. Wang, «A boric acid-assisted hydrothermal process for preparation of mesoporous silica nanoparticles with ultra-large mesopores and tunable particle sizes», Ceram. Int., vol. 49, n.o 12, pp. 20518-20527, jun. 2023. https://doi.org/10.1016/j.ceramint.2023.03.181
[26] C.-H. Lin, J.-H. Chang, Y.-Q. Yeh, S.-H. Wu, Y.-H. Liu, y C.-Y. Mou, «Formation of hollow silica nanospheres by reverse microemulsion», Nanoscale, vol. 7, n.o 21, pp. 9614-9626, 2015. https://doi.org/10.1039/C5NR01395J
[27] S. D. Karande, S. A. Jadhav, H. B. Garud, V. A. Kalantre, S. H. Burungale, y P. S. Patil, «Green and sustainable synthesis of silica nanoparticles», Nanotechnol. Environ. Eng., vol. 6, n.o 2, p. 29, ago. 2021. https://doi.org/10.1007/s41204-021-00124-1
[28] A. Gour y N. K. Jain, «Advances in green synthesis of nanoparticles», Artif. Cells Nanomedicine Biotechnol., vol. 47, n.o 1, pp. 844-851, dic. 2019. https://doi.org/10.1080/21691401.2019.1577878
[29] K. Parveen, V. Banse, y L. Ledwani, «Green synthesis of nanoparticles: Their advantages and disadvantages», presentado en 5TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES: (NCTP‐09), Baroda (India), 2016, p. 020048. doi: 10.1063/1.4945168
[30] S. Ying et al., «Green synthesis of nanoparticles: Current developments and limitations», Environ. Technol. Innov., vol. 26, p. 102336, may 2022. https://doi.org/10.1016/j.eti.2022.102336
[31] M. Shahrtash, «Silicon fertilization as a sustainable approach to disease management of agricultural crops», J. Plant Prot. Res., vol. 58, n.o 4, 2018
[32] M. E. C. Washington Le, «Preparation and Characterization of Nano Silica from Equisetum arvenses», J. Bioprocess. Biotech., vol. 05, n.o 02, 2015. https://doi.org/10.4172/2155-9821.1000205
[33] K. Adach, D. Kroisova, y M. Fijalkowski, «Biogenic silicon dioxide nanoparticles processed from natural sources», Part. Sci. Technol., vol. 39, n.o 4, pp. 481-489, may 2021. https://doi.org/10.1080/02726351.2020.1758857
[34] S. Mehmood et al., «A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms», Environ. Res., vol. 213, p. 113614, oct. 2022. https://doi.org/10.1016/j.envres.2022.113614
[35] T. V. S. Adinarayana, A. Mishra, I. Singhal, y D. V. R. Koti Reddy, «Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe( iii ) ions», Nanoscale Adv., vol. 2, n.o 9, pp. 4125-4132, 2020. https://doi.org/10.1039/D0NA00307G
[36] D. Sachan, A. Ramesh, y G. Das, «Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis», Environ. Nanotechnol. Monit. Manag., vol. 16, p. 100467, 2021
[37] Sharma, P., Kherb, J., Prakash, J. et al. A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants. Appl Nanosci 13, 735–747 (2023). https://doi.org/10.1007/s13204-021-01898-1
[38] R. H. Babu, P. Yugandhar, y N. Savithramma, «Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodon dactylon L.: a green approach», Bull. Mater. Sci., vol. 41, pp. 1-8, 2018
[39] M. Sankareswaran, M. Vanitha, R. Periakaruppan, y A. Anbukumaran, «Phyllanthus emblica Mediated Silica Nanomaterials: Biosynthesis, Structural and Stability Analysis», Silicon, vol. 14, n.o 15, pp. 10123-10127, oct. 2022. https://doi.org/10.1007/s12633-022-01724-5
[40] A. Tiwari, Y. L. Sherpa, A. P. Pathak, L. S. Singh, A. Gupta, y A. Tripathi, «One-pot green synthesis of highly luminescent silicon nanoparticles using Citrus limon (L.) and their applications in luminescent cell imaging and antimicrobial efficacy», Mater. Today Commun., vol. 19, pp. 62-67, jun. 2019. https://doi.org/10.1016/j.mtcomm.2018.12.005
[41] R. Periakaruppan, R. D. N, S. A. Abed, P. Vanathi, y J. S. Kumar, «Production of Biogenic Silica Nanoparticles by Green Chemistry Approach and Assessment of their Physicochemical Properties and Effects on the Germination of Sorghum bicolor», Silicon, vol. 15, n.o 10, pp. 4309-4316, jul. 2023. https://doi.org/10.1007/s12633-023-02348-z
[42] R. Periakaruppan, M. P. S, P. C, R. P, G. R. S, y J. Danaraj, «Biosynthesis of Silica Nanoparticles Using the Leaf Extract of Punica granatum and Assessment of Its Antibacterial Activities Against Human Pathogens», Appl. Biochem. Biotechnol., vol. 194, n.o 11, pp. 5594-5605, nov. 2022. https://doi.org/10.1007/s12010-022-03994-6
[43] C. Y. Rahimzadeh, A. A. Barzinjy, A. S. Mohammed, y S. M. Hamad, «Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles», PLOS ONE, vol. 17, n.o 8, p. e0268184, ago. 2022. https://doi.org/10.1371/journal.pone.0268184
[44] M. Aluga y K. Chewe, «AGRO-WASTE ASHES AS A FEEDER FOR THE SYNTHESIS OF SIO 2 NANOPARTICLES FOR ROAD CONSTRUCTION», presentado en WASTE MANAGEMENT AND ENVIRONMENTAL IMPACT 2022, Online, ago. 2022, pp. 53-63. doi: 10.2495/WMEI220051
[45] D. Dorairaj, N. Govender, S. Zakaria, y R. Wickneswari, «Green synthesis and characterization of UKMRC-8 rice husk-derived mesoporous silica nanoparticle for agricultural application», Sci. Rep., vol. 12, n.o 1, p. 20162, nov. 2022. https://doi.org/10.1038/s41598-022-24484-z
[46] W. Jansomboon, K. Boonmaloet, S. Sukaros, y P. Prapainainar, «Rice Hull Micro and Nanosilica: Synthesis and Characterization», Key Eng. Mater., vol. 718, pp. 77-80, nov. 2016. https://doi.org/10.4028/www.scientific.net/KEM.718.77
[47] B. Sekhon, «Nanotechnology in agri-food production: an overview», Nanotechnol. Sci. Appl., p. 31, may 2014. https://doi.org/10.2147/NSA.S39406
[48] F. Adam, T.-S. Chew, y J. Andas, «A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass», J. Sol-Gel Sci. Technol., vol. 59, n.o 3, pp. 580-583, sep. 2011. https://doi.org/10.1007/s10971-011-2531-7
[49] R. H. Alves, T. V. D. S. Reis, S. Rovani, y D. A. Fungaro, «Green Synthesis and Characterization of Biosilica Produced from Sugarcane Waste Ash», J. Chem., vol. 2017, pp. 1-9, 2017. https://doi.org/10.1155/2017/6129035
[50] N. K. Mohd, N. N. A. N. Wee, y A. A. Azmi, «Green synthesis of silica nanoparticles using sugarcane bagasse», presentado en 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), Krabi, Thailand, 2017, p. 020123. doi: 10.1063/1.5002317
[51] A. Boonmee y K. Jarukumjorn, «Preparation and characterization of silica nanoparticles from sugarcane bagasse ash for using as a filler in natural rubber composites», Polym. Bull., vol. 77, n.o 7, pp. 3457-3472, jul. 2020. https://doi.org/10.1007/s00289-019-02925-6
[52] P. E. Imoisili, K. O. Ukoba, y T.-C. Jen, «Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel», J. Mater. Res. Technol., vol. 9, n.o 1, pp. 307-313, ene. 2020. https://doi.org/10.1016/j.jmrt.2019.10.059
[53] D. F. Mohamad et al., «Synthesis of Mesoporous Silica Nanoparticle from Banana Peel Ash for Removal of Phenol and Methyl Orange in Aqueous Solution», Mater. Today Proc., vol. 19, pp. 1119-1125, 2019. https://doi.org/10.1016/j.matpr.2019.11.004
[54] M. Khairul Hanif Mohd Nazri y N. Sapawe, «Effective performance of silica nanoparticles extracted from bamboo leaves ash for removal of phenol», Mater. Today Proc., vol. 31, pp. A27-A32, 2020. https://doi.org/10.1016/j.matpr.2020.10.964
[55] G. Sivakumar y K. Amutha, «Studies on Silica Obtained from Cow Dung Ash», Adv. Mater. Res., vol. 584, pp. 470-473, oct. 2012. https://doi.org/10.4028/www.scientific.net/AMR.584.470
[56] M. L. L. Formoso, «Some topics on geochemistry of weathering: a review», An. Acad. Bras. Ciênc., vol. 78, n.o 4, pp. 809-820, dic. 2006. https://doi.org/10.1590/S0001-37652006000400014
[57] M. Yadav, V. Dwibedi, S. Sharma, y N. George, «Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability», J. Environ. Chem. Eng., vol. 10, n.o 6, p. 108550, dic. 2022. https://doi.org/10.1016/j.jece.2022.108550
[58] N. Vasanthi, L. M. Saleena, y S. A. Raj, «Silica Solubilization Potential of Certain Bacterial Species in the Presence of Different Silicate Minerals», Silicon, vol. 10, n.o 2, pp. 267-275, mar. 2018. https://doi.org/10.1007/s12633-016-9438-4
[59] H. Ehrlich, K. D. Demadis, O. S. Pokrovsky, y P. G. Koutsoukos, «Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments», Chem. Rev., vol. 110, n.o 8, pp. 4656-4689, ago. 2010. https://doi.org/10.1021/cr900334y
[60] M. M. Urrutia y T. J. Beveridge, «Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis)», Chem. Geol., vol. 116, n.o 3-4, pp. 261-280, oct. 1994. https://doi.org/10.1016/0009-2541(94)90018-3
[61] S. Abdeen, S. Geo, P. Praseetha, y R. Dhanya, «Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications», 2014
[62] S. Uroz, C. Calvaruso, M.-P. Turpault, y P. Frey-Klett, «Mineral weathering by bacteria: ecology, actors and mechanisms», Trends Microbiol., vol. 17, n.o 8, pp. 378-387, 2009
[63] R. Mohanraj et al., «Decolourisation efficiency of immobilized silica nanoparticles synthesized by actinomycetes», Mater. Today Proc., vol. 48, pp. 129-135, 2022. https://doi.org/10.1016/j.matpr.2020.04.139
[64] K. Natesan et al., «Biosynthesis of silica and copper nanoparticles from Trichoderma , Streptomyces and Pseudomonas spp. evaluated against collar canker and red root-rot disease of tea plants», Arch. Phytopathol. Plant Prot., vol. 54, n.o 1-2, pp. 56-85, ene. 2021. https://doi.org/10.1080/03235408.2020.1817258
[65] S. Show, A. Tamang, T. Chowdhury, D. Mandal, y B. Chattopadhyay, «Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: A facile and green approach for biotechnological applications», Colloids Surf. B Biointerfaces, vol. 126, pp. 245-250, feb. 2015. https://doi.org/10.1016/j.colsurfb.2014.12.039
[66] V. Patel, D. Berthold, P. Puranik, y M. Gantar, «Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity», Biotechnol. Rep., vol. 5, pp. 112-119, mar. 2015. https://doi.org/10.1016/j.btre.2014.12.001
[67] D. Fawcett, J. J. Verduin, M. Shah, S. B. Sharma, y G. E. J. Poinern, «A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses», J. Nanosci., vol. 2017, pp. 1-15, ene. 2017. https://doi.org/10.1155/2017/8013850
[68] P. C. Sahoo, F. Kausar, J. H. Lee, y J. I. Han, «Facile fabrication of silver nanoparticle embedded CaCO 3 microspheres via microalgae-templated CO 2 biomineralization: application in antimicrobial paint development», RSC Adv., vol. 4, n.o 61, p. 32562, jul. 2014. https://doi.org/10.1039/C4RA03623A
[69] Z. Bao, J. Cao, G. Kang, y C. Q. Lan, «Effects of reaction conditions on light-dependent silver nanoparticle biosynthesis mediated by cell extract of green alga Neochloris oleoabundans», Environ. Sci. Pollut. Res., vol. 26, pp. 2873-2881, 2019
[70] R. C. Dugdale y F. P. Wilkerson, «Silicate regulation of new production in the equatorial Pacific upwelling», Nature, vol. 391, n.o 6664, pp. 270-273, ene. 1998. https://doi.org/10.1038/34630
[71] M. Sumper y E. Brunner, «Learning from Diatoms: Nature’s Tools for the Production of Nanostructured Silica», Adv. Funct. Mater., vol. 16, n.o 1, pp. 17-26, ene. 2006. https://doi.org/10.1002/adfm.200500616
[72] T. Nakajima y B. E. Volcani, «3,4-Dihydroxyproline: A New Amino Acid in Diatom Cell Walls», Science, vol. 164, n.o 3886, pp. 1400-1401, jun. 1969. https://doi.org/10.1126/science.164.3886.1400
[73] R. W. Drum y H. S. Pankratz, «Post mitotic fine structure of Gomphonema parvulum», J. Ultrastruct. Res., vol. 10, n.o 3-4, pp. 217-223, abr. 1964. https://doi.org/10.1016/S0022-5320(64)80006-X
[74] N. Kröger, R. Deutzmann, y M. Sumper, «Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation», Science, vol. 286, n.o 5442, pp. 1129-1132, nov. 1999. https://doi.org/10.1126/science.286.5442.1129
[75] T. Nakajima y B. E. Volcani, «ϵ-N-trimethyl-L-δ -hydroxylysine phosphate and its nonphosphorylated compound in diatom cell walls», Biochem. Biophys. Res. Commun., vol. 39, n.o 1, pp. 28-33, abr. 1970. https://doi.org/10.1016/0006-291X(70)90752-7
[76] N. Poulsen y N. Kröger, «Silica Morphogenesis by Alternative Processing of Silaffins in the Diatom Thalassiosira pseudonana», J. Biol. Chem., vol. 279, n.o 41, pp. 42993-42999, oct. 2004. https://doi.org/10.1074/jbc.M407734200
[77] N. Kröger, R. Deutzmann, C. Bergsdorf, y M. Sumper, «Species-specific polyamines from diatoms control silica morphology», Proc. Natl. Acad. Sci., vol. 97, n.o 26, pp. 14133-14138, dic. 2000. https://doi.org/10.1073/pnas.260496497
[78] M. S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, y D. Losic, «Porous silica microshells from diatoms as biocarrier for drug delivery applications», Powder Technol., vol. 223, pp. 52-58, jun. 2012. https://doi.org/10.1016/j.powtec.2011.04.023
[79] X. Lin, L. Tirichine, y C. Bowler, «Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species», Plant Methods, vol. 8, n.o 1, p. 48, dic. 2012. https://doi.org/10.1186/1746-4811-8-48
[80] I. Rea, M. Terracciano, y L. De Stefano, «Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices», Adv. Healthc. Mater., vol. 6, n.o 3, p. 1601125, feb. 2017. https://doi.org/10.1002/adhm.201601125
[81] I. Rea et al., «Diatomite biosilica nanocarriers for siRNA transport inside cancer cells», Biochim. Biophys. Acta BBA – Gen. Subj., vol. 1840, n.o 12, pp. 3393-3403, dic. 2014. https://doi.org/10.1016/j.bbagen.2014.09.009
[82] L.-Z. Sun y Y.-J. Ying, «Moving dynamics of a nanorobot with three DNA legs on nanopore-based tracks», Nanoscale, p. 10.1039.D3NR03747A, 2023. https://doi.org/10.1039/D3NR03747A
[83] R. Sasirekha et al., «Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy», Mater. Sci. Eng. C, vol. 94, pp. 56-64, ene. 2019. https://doi.org/10.1016/j.msec.2018.09.009
[84] R. B. Vasani, D. Losic, A. Cavallaro, y N. H. Voelcker, «Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery», J. Mater. Chem. B, vol. 3, n.o 21, pp. 4325-4329, 2015. https://doi.org/10.1039/C5TB00648A
[85] B. Delalat et al., «Targeted drug delivery using genetically engineered diatom biosilica», Nat. Commun., vol. 6, n.o 1, p. 8791, nov. 2015. https://doi.org/10.1038/ncomms9791
[86] K. Squire, X. Kong, P. LeDuff, G. L. Rorrer, y A. X. Wang, «Photonic crystal enhanced fluorescence immunoassay on diatom biosilica», J. Biophotonics, vol. 11, n.o 10, p. e201800009, oct. 2018. https://doi.org/10.1002/jbio.201800009
[87] K. J. Squire et al., «Photonic crystal-enhanced fluorescence imaging immunoassay for cardiovascular disease biomarker screening with machine learning analysis», Sens. Actuators B Chem., vol. 290, pp. 118-124, jul. 2019. https://doi.org/10.1016/j.snb.2019.03.102
[88] C. B. Michielse y M. Rep, «Pathogen profile update: Fusarium oxysporum», Mol. Plant Pathol., vol. 10, n.o 3, pp. 311-324, may 2009. https://doi.org/10.1111/j.1364-3703.2009.00538.x
[89] V. Bansal et al., «Fungus-mediated biosynthesis of silica and titania particles», J. Mater. Chem., vol. 15, n.o 26, p. 2583, 2005. https://doi.org/10.1039/b503008k
[90] V. Bansal, D. Rautaray, A. Ahmad, y M. Sastry, «Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum», J. Mater. Chem., vol. 14, n.o 22, p. 3303, 2004. https://doi.org/10.1039/b407904c
[91] V. Bansal, A. Sanyal, D. Rautaray, A. Ahmad, y M. Sastry, «Bioleaching of Sand by the FungusFusarium oxysporum as a Means of Producing Extracellular Silica Nanoparticles», Adv. Mater., vol. 17, n.o 7, pp. 889-892, abr. 2005. https://doi.org/10.1002/adma.200401176
[92] A. Pieła et al., «Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing», Bioorganic Chem., vol. 99, p. 103773, jun. 2020. https://doi.org/10.1016/j.bioorg.2020.103773
[93] A. Zielonka, E. Żymańczyk-Duda, M. Brzezińska-Rodak, M. Duda, J. Grzesiak, y M. Klimek-Ochab, «Nanosilica synthesis mediated by Aspergillus parasiticus strain», Fungal Biol., vol. 122, n.o 5, pp. 333-344, may 2018. https://doi.org/10.1016/j.funbio.2018.02.004
[94] E. Vetchinkina, E. Loshchinina, M. Kupryashina, A. Burov, y V. Nikitina, «Shape and Size Diversity of Gold, Silver, Selenium, and Silica Nanoparticles Prepared by Green Synthesis Using Fungi and Bacteria», Ind. Eng. Chem. Res., vol. 58, n.o 37, pp. 17207-17218, sep. 2019. https://doi.org/10.1021/acs.iecr.9b03345
[95] M. A. Albalawi, A. M. Abdelaziz, M. S. Attia, E. Saied, H. H. Elganzory, y A. H. Hashem, «Mycosynthesis of Silica Nanoparticles Using Aspergillus niger: Control of Alternaria solani Causing Early Blight Disease, Induction of Innate Immunity and Reducing of Oxidative Stress in Eggplant», Antioxidants, vol. 11, n.o 12, p. 2323, nov. 2022. https://doi.org/10.3390/antiox11122323
[96] P. Samaddar, Y. S. Ok, K.-H. Kim, E. E. Kwon, y D. C. W. Tsang, «Synthesis of nanomaterials from various wastes and their new age applications», J. Clean. Prod., vol. 197, pp. 1190-1209, oct. 2018. https://doi.org/10.1016/j.jclepro.2018.06.262
[97] V. Kumar Yadav y M. H. Fulekar, «Green synthesis and characterization of amorphous silica nanoparticles from fly ash», Mater. Today Proc., vol. 18, pp. 4351-4359, 2019. https://doi.org/10.1016/j.matpr.2019.07.395
[98] F. Yan et al., «Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO 2 Capture», Environ. Sci. Technol., vol. 51, n.o 13, pp. 7606-7615, jul. 2017. https://doi.org/10.1021/acs.est.7b00320
[99] M. Sarikaya, T. Depci, R. Aydogmus, A. Yucel, y N. Kizilkaya, «Production of Nano Amorphous SiO 2 from Malatya Pyrophyllite», IOP Conf. Ser. Earth Environ. Sci., vol. 44, p. 052004, oct. 2016. https://doi.org/10.1088/1755-1315/44/5/052004
[100] S. Stopic et al., «Synthesis of Nanosilica via Olivine Mineral Carbonation under High Pressure in an Autoclave», Metals, vol. 9, n.o 6, p. 708, jun. 2019. https://doi.org/10.3390/met9060708
[101] F. Bergaya y G. Lagaly, «General Introduction», en Developments in Clay Science, vol. 5, Elsevier, 2013, pp. 1-19. doi: 10.1016/B978-0-08-098258-8.00001-8
[102] X. Zhou, L. Wu, J. Yang, J. Tang, L. Xi, y B. Wang, «Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries», J. Power Sources, vol. 324, pp. 33-40, ago. 2016. https://doi.org/10.1016/j.jpowsour.2016.05.058
[103] J. Ryu, D. Hong, M. Shin, y S. Park, «Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability», ACS Nano, vol. 10, n.o 11, pp. 10589-10597, nov. 2016. https://doi.org/10.1021/acsnano.6b06828
[104] K. Adpakpang, S. B. Patil, S. M. Oh, J.-H. Kang, M. Lacroix, y S.-J. Hwang, «Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate», Electrochimica Acta, vol. 204, pp. 60-68, jun. 2016. https://doi.org/10.1016/j.electacta.2016.04.043
[105] A. Mourhly, M. Khachani, A. E. Hamidi, M. Kacimi, M. Halim, y S. Arsalane, «The Synthesis and Characterization of Low-Cost Mesoporous Silica SiO 2 from Local Pumice Rock», Nanomater. Nanotechnol., vol. 5, p. 35, ene. 2015. https://doi.org/10.5772/62033
[106] Q. Chen et al., «From natural clay minerals to porous silicon nanoparticles», Microporous Mesoporous Mater., vol. 260, pp. 76-83, abr. 2018. https://doi.org/10.1016/j.micromeso.2017.10.033
[107] Q. Chen et al., «Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties», J. Power Sources, vol. 405, pp. 61-69, nov. 2018. https://doi.org/10.1016/j.jpowsour.2018.10.031