–
Twin roll casting of ZAX210 magnesium wire: Processing, microstructure, texture and mechanical properties
KITTNER Kristina, ULLMANN Madlen, PRAHL Ulrich
download PDFAbstract. Wires of magnesium alloys are appropriate candidates for applications as filler materials, as biomaterials due to their good biocompatibility and excellent mechanical properties but also as materials for joining applications, such as welding wires or screws. Twin roll casting (TRC) provides an innovative and efficient technology for the production of semi-finished wires with a good property profile. TRC of wire is a comparatively new technology that has so far only been performed at the Institute of Metal Forming at Technische Universität Bergakademie Freiberg, Germany. In recent studies, the process was combined with the promising calcium-containing Mg alloy ZAX210 (Mg-2Zn-1Al-0.3Ca). The wire was produced with an oval cross section under variation of twin roll casting speed in order to investigate the influence of twin roll casting speed (2.5 m/min to 4.5 m/min) on microstructure and texture evolution. Microstructure after TRC consists of fine dendrites and locally deformed microstructure. Twinning and small globular recrystallized grains can be detected as well. Furthermore, it can be observed that higher twin roll casting speeds (4.5 m/min) result in more pronounced formation of intermetallic phases and segregations but also in a higher amount of recrystallized grains, which arise due to dynamic recrystallization during twin roll casting. Texture analysis reveals the development of strong basal textures at lower (2.5 m/min) twin roll casting speed and weakened textures with prismatic character at increased twin roll casting speed of 4.5 m/min.
Keywords
Twin Roll Casting, Wire, Texture, Twinning, Dynamic Recrystallization
Published online 9/15/2024, 11 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: KITTNER Kristina, ULLMANN Madlen, PRAHL Ulrich, Twin roll casting of ZAX210 magnesium wire: Processing, microstructure, texture and mechanical properties, Materials Research Proceedings, Vol. 44, pp 645-655, 2024
DOI: https://doi.org/10.21741/9781644903254-69
The article was published as article 69 of the book Metal Forming 2024
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R. Kawalla, M. Ullmann, T. Henseler, U. Prahl, Magnesium Twin-Roll Casting Technology for Flat and Long Products – State of the Art and Future, Mater. Sci. Forum 941 (2018) 1431–1436. https://doi.org/10.4028/www.scientific.net/MSF.941.1431
[2] D. Liang, C.B. Cowley, The twin-roll strip casting of magnesium, JOM 56 (2004) 26–28. https://doi.org/10.1007/s11837-004-0122-6
[3] L. Löchte, H. Westengen, J. Rødseth (Eds.), An efficient route to magnesium alloy sheet: Twin roll casting and hot rolling, 2005.
[4] M. Moses, C. Kawalla, R. Kawalla, M. Höck, Development of an Innovative and Quality-Focused Production Technology for Magnesium Wire, MSF 918 (2018) 34–39. https://doi.org/10.4028/www.scientific.net/MSF.918.34
[5] L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, H.J. Zhang, Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy, 8th STERMAT on Stereology and Image Analysis in Materials Science 104 (2015) 66–72. https://doi.org/10.1016/j.matchar.2014.09.020
[6] V.E. Bazhenov, A.V. Li, A.A. Komissarov, A.V. Koltygin, S.A. Tavolzhanskii, V.A. Bautin, O.O. Voropaeva, A.M. Mukhametshina, A.A. Tokar, Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys, J. Magnes. Alloy. 9 (2021) 1428–1442. https://doi.org/10.1016/j.jma.2020.11.008
[7] Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, X.L. Liu, Z.J. Wang, Y.T. Liu, The effect of double extrusion on the microstructure and mechanical properties of Mg–Zn–Ca alloy, 14th International Conference on the Strength of Materials 583 (2013) 69–77. https://doi.org/10.1016/j.msea.2013.06.054
[8] M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, High-speed extrusion of dilute Mg-Zn-Ca-Mn alloys and its effect on microstructure, texture and mechanical properties, 14th International Conference on the Strength of Materials 678 (2016) 329–338. https://doi.org/10.1016/j.msea.2016.10.007
[9] T. Al-Samman, G. Gottstein, Deformation Conditions and Stability of the Basal Texture in Magnesium, Mater. Sci. Forum 539-543 (2007) 3401–3406. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3401
[10] C. Schmidt, R. Kawalla, Decomposing the basal texture in rolled az31 magnesium sheets, Mg2012 (2012).
[11] B. Zhang, Y. Wang, L. Geng, C. Lu, Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys, 14th International Conference on the Strength of Materials 539 (2012) 56–60. https://doi.org/10.1016/j.msea.2012.01.030
[12] G. Wang, G. Huang, X. Chen, Q. Deng, A. Tang, B. Jiang, F. Pan, Effects of Zn addition on the mechanical properties and texture of extruded Mg-Zn-Ca-Ce magnesium alloy sheets, 14th International Conference on the Strength of Materials 705 (2017) 46–54. https://doi.org/10.1016/j.msea.2017.08.036
[13] M. Ullmann, K. Kittner, T. Henseler, A. Stöcker, U. Prahl, R. Kawalla, Development of new alloy systems and innovative processing technologies for the production of magnesium flat products with excellent property profile, Procedia Manuf. 27 (2019) 203–208. https://doi.org/10.1016/j.promfg.2018.12.065
[14] F. Arndt, S. Berndorf, M. Moses, M. Ullmann, U. Prahl, Microstructure and Hot Deformation Behaviour of Twin-Roll Cast AZ31 Magnesium Wire, Crystals 12 (2022) 173. https://doi.org/10.3390/cryst12020173
[15] M. Moses, M. Ullmann, R. Kawalla, U. Prahl, Improving Mechanical Properties of Twin-Roll Cast AZ31 by Wire Rolling, Mater. Sci. Forum 1016 (2021) 957–963. https://doi.org/10.4028/www.scientific.net/MSF.1016.957
[16] F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX – Free and Open Source Software Toolbox, SSP 160 (2010) 63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63
[17] M. Zimina, M. Šlapáková, J. Bohlen, D. Letzig, G. Kurz, S. Zaunschirm, J. Kastner, M. Cieslar, Center Line Segregation in Twin-Roll Cast AZ31 Magnesium Alloy, Acta Phys. Pol. A 134 (2018) 774–778. https://doi.org/10.12693/APhysPolA.134.774
[18] K. Kittner, M. Ullmann, F. Arndt, S. Berndorf, T. Henseler, U. Prahl, Analysis of defects in a twin roll cast Mg‐Y‐Zn magnesium alloy, Eng. Reports 17 (2021) 177. https://doi.org/10.1002/eng2.12394
[19] K. Kittner, M. Ullmann, T. Henseler, R. Kawalla, U. Prahl, Microstructure and Hot Deformation Behavior of Twin Roll Cast Mg-2Zn-1Al-0.3Ca Alloy, Materials 12 (2019) 1020.
[20] C. Beetles, M.R. Barnett (Eds.), Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, 2012.
[21] F. Mokdad, D.L. Chen, D.Y. Li, Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy, Mater. Des. 119 (2017) 376–396. https://doi.org/10.1016/j.matdes.2017.01.072
[22] I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tome, Statistical analyses of deformation twinning in magnesium, Philos. Mag. 90 (2010) 2161–2190. https://doi.org/10.1080/14786431003630835
[23] K. Kittner, M. Ullmann, U. Prahl, Microstructural and Textural Investigation of an Mg-Zn-Al-Ca Alloy after Hot Plane Strain Compression, Materials (Basel, Switzerland) 15 (2022). Https://doi.org/10.3390/ma15217499
[24] M.R. Barnett, Twinning and the ductility of magnesium alloys Part II. “Contraction” twins, Mater. Sci. Eng. A 464 (2007) 8–16. https://doi.org/10.1016/j.msea.2007.02.109
[25] J. Wang, I.J. Beyerlein, Atomic Structures of $$ [0\bar{1}10] $$ Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) Crystals, Metall. Mater. Trans. A 43 (2012) 3556–3569. https://doi.org/10.1007/s11661-012-1177-6
[26] C. Xie, Q.H. Fang, X. Liu, P.C. Guo, J.K. Chen, M.H. Zhang, Y.W. Liu, B. Rolfe, L.X. Li, Theoretical study on the {1¯012} deformation twinning and cracking in coarse-grained magnesium alloys, Int. J. Plast. 82 (2016) 44–61. https://doi.org/10.1016/j.ijplas.2016.02.001
[27] L. Wang, Y. Li, H. Zhang, Z. Zhang, Q. Yang, Q. Zhang, H. Wang, W. Cheng, K.S. Shin, M. Vedani, Review: Achieving enhanced plasticity of magnesium alloys below recrystallization temperature through various texture control methods, J. Mater. Res. Tech. 9 (2020) 12604–12625. https://doi.org/10.1016/j.jmrt.2020.09.002
[28] S. Wasiur-Rahman, M. Medraj, Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems, Fourth International Conference on Bulk Metallic Glasses 17 (2009) 847–864. https://doi.org/10.1016/j.intermet.2009.03.014
[29] H. Somekawa, T. Mukai, Hall–Petch relation for deformation twinning in solid solution magnesium alloys, 14th International Conference on the Strength of Materials 561 (2013) 378–385. https://doi.org/10.1016/j.msea.2012.10.040.