Development of a Mg-6.8Y-2.5Zn-0.4Zr alloy (WZ73) under varying twin roll casting conditions

Development of a Mg-6.8Y-2.5Zn-0.4Zr alloy (WZ73) under varying twin roll casting conditions

UEBERSCHÄR Franziska, ULLMANN Madlen, PRAHL Ulrich

download PDF

Abstract. Twin roll casting (TRC) has a big potential to produce thin strip material from magnesium alloys and enables the production in an economic manner. However, the final properties of TRC strips, such as microstructure and texture, are influenced by the twin roll casting conditions. In this work the development of a Mg-6.8Y-2.5Zn-0.4Zr alloy (WZ73) during different twin roll casting conditions, varying the twin roll casting speed, were studied. As a reference the strain and strain rate were determined. After twin roll casting the microstructure is inhomogeneous over the strip thickness and consists of a network-like structure of the LPSO phases and the α-Mg matrix. The α-Mg matrix is made up of dobulites (flake-like structures), which is already known for this alloy. [1,2] Typical defects of the twin roll cast strips were observed as well. It was also revealed that the twin roll casting conditions have a big influence on the precipitation, morphology, and phase fraction of the LPSO phases. For example, the phase fraction increases with the strain decreasing whilst the thickness of the precipitated phases increases with an increased strain. In all samples kink bands and yttrium enriched precipitations within the network like structures were detected. No dynamic recrystallization nor grain boundaries were detected. The resulting textures revealed the activation of basal slip and non-basal slip, but the intensities are small, regardless of the twin roll casting conditions.

Keywords
WZ73, Twin Roll Casting, Microstructure, Texture, LPSO

Published online 9/15/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: UEBERSCHÄR Franziska, ULLMANN Madlen, PRAHL Ulrich, Development of a Mg-6.8Y-2.5Zn-0.4Zr alloy (WZ73) under varying twin roll casting conditions, Materials Research Proceedings, Vol. 44, pp 625-634, 2024

DOI: https://doi.org/10.21741/9781644903254-67

The article was published as article 67 of the book Metal Forming 2024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Ullmann, K. Kittner, T. Henseler, C. Krbetschek, D. Rafaja, R. Kawalla, U. Prahl, Dynamic recrystallization and texture evolution of Mg-6.8Y-2.5Zn-0.3Zr alloy during hot rolling, Procedia Manuf. 50 (2020) 809–816. https://doi.org/10.1016/j.promfg.2020.08.146
[2] K. Kittner, M. Ullmann, F. Arndt, R. Kawalla, U. Prahl, Microstructure and Texture Evolution during Twin-Roll Casting and Annealing of a Mg–6.8Y2.5Zn–0.4Zr Alloy (WZ73), Crystals 10 (2020) 513. https://doi.org/10.3390/cryst10060513
[3] K. Neh, M. Ullmann, R. Kawalla, Twin-Roll-Casting and Hot Rolling of Magnesium Alloy WE43, Procedia Eng. (2014) 1553–1558. https://doi.org/10.1016/j.proeng.2014.10.189
[4] K. Kittner, M. Ullmann, T. Henseler, R. Kawalla, U. Prahl, Microstructure and Hot Deformation Behavior of Twin Roll Cast Mg-2Zn-1Al-0.3Ca Alloy, Materials (Basel, Switzerland) 12 (2019). https://doi.org/10.3390/ma12071020
[5] R. Kawalla, M. Ullmann, C. Schmidt, J. Dembińska, H.P. Vogt, Properties of Magnesium Strips Produced by Twin-Roll-Casting and Hot Rolling, Mater. Sci. Forum 690 (2011) 21–24. https://doi.org/10.4028/www.scientific.net/MSF.690.21
[6] G.T. Bae, J.H. Bae, D.H. Kang, H. Lee, N.J. Kim, Effect of Ca addition on microstructure of twin-roll cast AZ31 Mg alloy, Met. Mater. Int. 15 (2009) 1–5. https://doi.org/10.1007/s12540-009-0001-3
[7] Y.C. Wan, S.N. Jiang, C.M. Liu, B.Z. Wang, Z.Y. Chen, Effect of Nd and Dy on the microstructure and mechanical property of the as extruded Mg–1Zn–0.6Zr alloy, Mater. Sci. Eng. A (2015) 158–163. https://doi.org/10.1016/j.msea.2014.12.003
[8] Y.C. Wan, C. Liu, H. Xiao, Y. Gao, S. Jiang, Z.Y. Chen, Improving the Ductility of Mg-Gd-Y-Zr Alloy through Extrusion and a Following Rolling, Adv. Eng. Mater. 20 (2018) 1701041. https://doi.org/10.1002/adem.201701041
[9] A. Ono, E. Abe, T. Itoi, M. Hirohashi, M. Yamasaki, Y. Kawamura, Microstructure Evolutions of Rapidly-Solidified and Conventionally-Cast Mg97Zn1Y2 Alloys, Mater. Trans. 49 (2008) 990–994. https://doi.org/10.2320/matertrans.MC200763
[10] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282–6293. https://doi.org/10.1016/j.actamat.2010.07.050
[11] K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Strain-rate dependence of deformation behavior of LPSO-phases, Mater. Letters 214 (2018) 119–122. https://doi.org/10.1016/j.matlet.2017.11.117
[12] J.-B. Liu, K. Zhang, J.-T. Han, X.-G. Li, Y.-J. Li, M.-L. Ma, J.-W. Yuan, G.-L. Shi, Microstructure and texture evolution of Mg–7Y–1Nd–0.5Zr alloy sheets with different rolling temperatures, Rare Metals 39 (2020) 1273–1278. https://doi.org/10.1007/s12598-016-0740-5
[13] K.-H. Kim, J.G. Lee, G.T. Bae, J.H. Bae, N.J. Kim, Mechanical Properties and Microstructure of Twin-Roll Cast Mg-Zn-Y Alloy, Mater. Trans. 49 (2008) 980–985. https://doi.org/10.2320/matertrans.MC200752
[14] M. Ullmann, K. Kittner, U. Prahl, Hot Rolling of the Twin-Roll Cast and Homogenized Mg-6.8Y-2.5Zn (WZ73) Magnesium Alloy Containing LPSO Structures, Metals 11 (2021) 1771. https://doi.org/10.3390/met11111771
[15] K. Suzawa, S. Inoue, S. Nishimoto, S. Fuchigami, M. Yamasaki, Y. Kawamura, K. Yoshida, N. Kawabe, High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation, Mater. Sci. Eng. A 764 (2019) 138179. https://doi.org/10.1016/j.msea.2019.138179
[16] M. Weiner, M. Schmidtchen, U. Prahl, Extension of the Freiberg Layer Model by Means of Solidification for Roll Casting, Adv. Eng. Mater. 24 (2022). https://doi.org/10.1002/adem.202101546
[17] F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX – Free and Open Source Software Toolbox, Semi-Solid Processing of Alloys and Composites X 160 (2010) 63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63
[18] M.A. Wells, A. Hadadzadeh, Twin Roll Casting (TRC) of Magnesium Alloys – Opportunities and Challenges, MSF 783-786 (2014) 527–533. https://doi.org/10.4028/www.scientific.net/MSF.783-786.527
[19] C. Gras, M. Meredith, J.D. Hunt, Microdefects formation during the twin-roll casting of Al–Mg–Mn aluminium alloys, J. Mater. Process. Technol. 167 (2005) 62–72. https://doi.org/10.1016/j.jmatprotec.2004.09.084
[20] A. Hadadzadeh, M.A. Wells, Inverse and centreline segregation formation in twin roll cast AZ31 magnesium alloy, Mater. Sci. Technol. 31 (2015) 1715–1726. https://doi.org/10.1179/1743284714Y.0000000750
[21] K. Kittner, M. Ullmann, F. Arndt, S. Berndorf, T. Henseler, U. Prahl, Analysis of defects in a twin roll cast Mg‐Y‐Zn magnesium alloy, Engineering Reports 4 (2022). https://doi.org/10.1002/eng2.12394
[22] Y. Li, C. He, J. Li, Z. Wang, Di Wu, G. Xu, A Novel Approach to Improve the Microstructure and Mechanical Properties of Al-Mg-Si Aluminum Alloys during Twin-Roll Casting, Materials (Basel, Switzerland) 13 (2020). https://doi.org/10.3390/ma13071713
[23] S.A. Lockyer, M. Yun, J.D. Hunt, D.V. Edmonds, Micro- and macrodefects in thin sheet twin-roll cast aluminum alloys, Materials Characterization 37 (1996) 301–310. https://doi.org/10.1016/S1044-5803(97)80019-8
[24] M. Yun, S. Lokyer, J.D. Hunt, Twin roll casting of aluminium alloys, Mater. Sci. Eng. A 280 (2000) 116–123. https://doi.org/10.1016/S0921-5093(99)00676-0
[25] G. Kurz, J. Wendt, J. Bohlen, D. Letzig, Microstructure Evolution of Different Magnesium Alloys During Twin Roll Casting 465–470. https://doi.org/10.1002/9781119093428.ch86
[26] A. Javaid, J. Hanke, C.H. Simha, M.S. Kozdras, Twin Roll Casting of Magnesium Strip at Canmet Materials — Modeling and Experiments, in: M.V. Manuel, A. Singh, M. Alderman, N.R. Neelameggham (Eds.), Springer eBook Collection Chemistry and Materials Science, Magnesium Technology 2015, Springer, Cham, 2016, pp. 461–464.
[27] J.F. Nie, Y.M. Zhu, A.J. Morton, On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in Mg-Y-Zn Alloys, Metall and Mat Trans A 45 (2014) 3338–3348. https://doi.org/10.1007/s11661-014-2301-6
[28] C. Krbetschek, R. Trân, H. Wemme, M. Ullmann, U. Prahl, D. Rafaja, Hot crack susceptibility of cast Mg 97 Y 2 Zn 1, Engineering Reports 4 (2022). https://doi.org/10.1002/eng2.12380
[29] J.Y. Yang, W.J. Kim, Effect of I(Mg3YZn6)-, W(Mg3Y2Zn3)- and LPSO(Mg12ZnY)-phases on tensile work-hardening and fracture behaviors of rolled Mg–Y–Zn alloys, J. Mater. Res. Technol. 8 (2019) 2316–2325. https://doi.org/10.1016/j.jmrt.2019.04.016
[30] M. Saadati, R.A. Khosroshahi, G. Ebrahimi, M. Jahazi, Formation of precipitates in parallel arrays on LPSO structures during hot deformation of GZ41K magnesium alloy, Mater. Charact. 131 (2017) 234–243. https://doi.org/10.1016/j.matchar.2017.07.007
[31] H. Azzeddine, D. Bradai, Texture and Microstructure of WE54 Alloy after Hot Rolling and Annealing, MSF 702-703 (2011) 453–456. https://doi.org/10.4028/www.scientific.net/MSF.702-703.453.