Semisolid deposition of metallic material by extrusion-base analytical and simulative methodologies

Semisolid deposition of metallic material by extrusion-base analytical and simulative methodologies

BRUNI Carlo

download PDF

Abstract. The objective of the paper is the analytical and finite element simulation study of the material behaviour at temperatures of 400 – 450°C of AZ31 and ZM21 magnesium alloys tested for bulk metal working. In the extrusion, representing the main phase of the fused deposition modeling, the metal work material considered was a bulk magnesium alloy billet. The stress and deformation fields are reported in detail using analytical modeling to describe the material in a very small volume of a extruder. It is observed that the increase in the extrusion temperature also determined by the deformation and friction heat produces an increase in the thermal load particularly visible in the high deformed zone. This allows the obtaining of the semisolid condition for the material described by the temperature levels reported by the numerical simulations. Such technology results very useful for ribs deposition over flat surfaces.

Keywords
FDM, Analytical Modeling, Finite Element Simulation, Magnesium Alloy

Published online 9/15/2024, 11 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: BRUNI Carlo, Semisolid deposition of metallic material by extrusion-base analytical and simulative methodologies, Materials Research Proceedings, Vol. 44, pp 433-443, 2024

DOI: https://doi.org/10.21741/9781644903254-47

The article was published as article 47 of the book Metal Forming 2024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] S. Singh, G. Singh, C. Prakash and S. Ramakrishna, Current status and future directions of fused filament fabrication, Journal of Manufact. Proc. 55, 2020, 288. https://doi.org/10.1016/j.jmapro.2020.04.049
[2] M. Mousapour, M. Salmi, L. Klemettinen and J. Partanen, Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique, Journal of Manufact. Proc. 67 (2021) 438. https://doi.org/10.1016/j.jmapro.2021.05.021
[3] N. Kumar, V. Gupta, P. Saxena, A. Bajpai, C. Lahoda, J. Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B 264 (2023) 110915. https://doi.org/10.1016/j.compositesb.2023.110915
[4] M. B. Jabłońska, Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review, Archives of Civil and Mechanical Engineering 23 (2023) 136 https://doi.org/10.1007/s43452-023-00656-0
[5] S. Roshchupkin, A. Kolesov, A. Tarakhovskiy, I. Tishchenko, A brief review of main ideas of metal fused filament fabrication, Materials Today: Proceedings 38 (2021) 2063-2067. https://doi.org/10.1016/j.matpr.2020.10.142
[6] F. W. C. Farias, V. R. Duarte, I. Oliveira, J. da Cruz P. Filho, N. Schell, E. Maawad, J.A. Avila, J.Y. Li , Y. Zhang, G. Santos, J.P. Oliveira, In situ interlayer hot forging arc based directed energy deposition of Inconel® 625: process development and microstructure effects, Additive Manufacturing 66 (2023) 103476. https://doi.org/10.1016/j.matpr.2020.10.142
[7] A. I. Nurhudan, S. Supriadi, Y. Whulanza A. S. Saragih, Additive manufacturing of metallic based on extrusion process: A review. Journal of Manufacturing Processes 66 (2021) 228–237. https://doi.org/10.1016/j.jmapro.2021.04.018
[8] Y. Qi Li, F. Li, F. Wei Kang, H. Q. Du, Z. Y. Chen, Recent research and advances in extrusion forming of magnesium alloys: A review, Journal of Alloys and Compounds, 953 (2023) 170080. https://doi.org/10.1016/j.jallcom.2023.170080
[9] J. Feng, D. Zhang, H. Hu, Y. Zhao, X. Chen, B. Jiang, F. Pan, Improved microstructures of AZ31 magnesium alloy by semi-solid extrusion, Materials Science & Engineering A 800 (2021) 140204. https://doi.org/10.1016/j.msea.2020.14020
[10] S. A. Parasız , B. L. Kinsey, N. Mahayatsanun, J. Cao, Effect of specimen size and grain size on deformation in microextrusion, Journal of Manufacturing Processes 13 (2011) 153–159. https://doi.org/10.1016/j.jmapro.2011.05.002
[11] B. Meng, M. Wan, R. Zhao, Z. Zou, H. LIU, Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review. Chinese Journal of Aeronautics (2021) 34 79-103. https://doi.org/10.1016/j.cja.2020.03.028
[12] N. Krishnan, J. Cao, K. Doh, Study of the Size Effect on Friction Conditions in Microextrusion—Part I: Microextrusion Experiments and Analysis, J. Manuf. Sci. Eng. 2007, 129(4): 669-676. https://doi.org/10.1115/1.2386207
[13] Yu Y. , Hisanao K., Tsuyoshi, F, Effect of forming conditions on microstructure and room-temperature mechanical characterization of Zn–22Al superplastic microtubes fabricated by direct extrusion, Materials Science & Engineering A 844 (2022) 143160. https://doi.org/10.1016/j.msea.2022.143160
[14] M. Schewe, H. Wilbuer, A. Menze, Simulation of wear and effective friction properties of microstructured surfaces, Wear 464–465 (2021) 203-491. https://doi.org/10.1016/j.wear.2020.203491
[15] S. Li, X. Yang, J. Hou, W. Du, A review on thermal conductivity of magnesium and its alloys,
Journal of Magnesium and Alloys, 8 (2020) 78–90. https://doi.org/10.1016/j.jma.2019.08.002
[16] B. Liu, Y. Wang , Z. Lin, T. Zhang, Creating metal parts by Fused Deposition Modeling and Sintering, Materials letter 263 (2020) 127252. https://doi.org/10.1016/j.matlet.2019.127252
[17] N. Bontcheva , G. Petzov , L. Parashkevova, Thermomechanical modelling of hot extrusion of Al-alloys,followed by cooling on the press, Computational Materials Science 38 (2006) 83–89. https://doi.org/10.1016/j.commatsci.2006.01.009
[18] M. S. Kesler, M. L. Neveau, W. G. Carter, H. B. Henderson, Z. C. Sims, D. Weiss, T. T. Li, K. McCall, M. Glicksman, O. Rios, Liquid direct reactive interface printing of structural aluminum alloys, Applied Materials Today 13 (2018) 339–343. https://doi.org/10.1016/j.apmt.2018.10.005
[19] Huang, W., Chen, S., Xiao, J., Jiang, X., Jia, Y. Laser wire-feed metal additive manufacturing of the Al alloy. Opt. Laser Technol. (2021) 134, 10662. https://doi.org/10.1016/j.optlastec.2020.106627
[20] L. E. S. Paes, H. Santos Ferreira, M. Pereira, F. A. Xavier, W. L. Weingaertner, L.O. Vilarinho, Modeling layer geometry in directed energy deposition with laser for additive manufacturing, Surface & Coatings Technology 409 (2021) 126-897. https://doi.org/10.1016/j.surfcoat.2021.126897
[21] C. Bruni, M. El Mehtedi, and F. Gabrielli, Flow curve modelling of a ZM21 magnesium alloy and finite element simulation in hot deformation, Key Engineering Materials Vols. 622-623 (2014) 588-595. https://doi:10.4028/www.scientific.net/KEM.622-623.588
[22] C. Bruni et al., Constitutive models for AZ31 Magnesium alloys, Key Engineering Materials, 367 (2008) 87-94. https://doi.org/10.4028/www.scientific.net/KEM.367.87
[23] R. R. Yadav, Y. Dewang, J. Raghuwanshi,V. Sharma, Finite element analysis of extrusion process using aluminum alloy, Materials Today: Proceedings 24 (2020) 500–509. https://doi.org/10.1016/j.matpr.2020.04.302
[24] N. Fietier, Y. Krahenbuhl, M. Vialard, New methods for the fast simulations of the extrusion
process of hot metals, Journal of Mat. Proc. Technology 209 (2009) 2244–2259. https://doi.org/10.1016/j.jmatprotec.2008.05.022
[25] A. García-Domínguez, J. Claver, A.M. Camacho, M. Sebastián. Comparative Analysis of Extrusion Processes by Finite Element Analysis, Procedia Engineering 100 ( 2015 ) 74. https://doi.org/10.1016/j.proeng.2015.01.344