–
Simulation of texture-related micro-indentation behavior of typical HCP alloy plates
ZHOU Xiangyu, ZHOU Kecheng, WU Peidong, XU Zhutian, PENG Linfa, LI Shuhui, WANG Huamiao
download PDFAbstract: The mechanical behaviors of magnesium and its alloys, regulated by the slip and twinning mechanisms, are remarkably influenced by the crystalline orientation. A better understanding and quantification of the mechanisms in deformation is necessary. To this end, the crystal plasticity finite element (CPFE) simulations of magnesium alloy plates have been investigated in this study. The process of impression of single crystal samples with three different declination angles with 0°, 45°, and 90° is simulated. The corresponding detailed CPFE simulations reveal a texture-dependent spatial distribution of extension twins, and the twin morphologies and the indentation topography of single crystals have been discussed, highlighting the influence of the initial texture. Furthermore, the simulations uncover the accumulated shear strain of the deformation system varying with spatial position inside the sample, which is in favor of the analysis of the twin-favor zone.
Keywords
Magnesium Alloy, Texture-Dependency, Crystal Plasticity, Twinning
Published online 9/15/2024, 7 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: ZHOU Xiangyu, ZHOU Kecheng, WU Peidong, XU Zhutian, PENG Linfa, LI Shuhui, WANG Huamiao, Simulation of texture-related micro-indentation behavior of typical HCP alloy plates, Materials Research Proceedings, Vol. 44, pp 106-112, 2024
DOI: https://doi.org/10.21741/9781644903254-12
The article was published as article 12 of the book Metal Forming 2024
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] S.R. Agnew, J.F. Nie, Preface to the viewpoint set on: The current state of magnesium alloy science and technology, Scr. Mater. 63 (2010) 671–673. https://doi.org/10.1016/j.scriptamat.2010.06.029
[2] D. Eliezer, E. Aghion, F.H. (Sam) Froes, Magnesium Science, Technology and Applications, Adv. Perform. Mater. 5 (1998) 201–212. https://doi.org/10.1023/A:1008682415141.
[3] T.M. Pollock, Weight Loss with Magnesium Alloys, Science. 328 (2010) 986–987. https://doi.org/10.1126/science.1182848
[4] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloy. 9 (2021) 705–747. https://doi.org/10.1016/j.jma.2021.04.001
[5] B. Shi, C. Yang, Y. Peng, F. Zhang, F. Pan, Anisotropy of wrought magnesium alloys: A focused overview, J. Magnes. Alloy. 10 (2022) 1476–1510. https://doi.org/10.1016/j.jma.2022.03.006
[6] C.M. Cepeda-Jiménez, M.T. Pérez-Prado, Microplasticity-based rationalization of the room temperature yield asymmetry in conventional polycrystalline Mg alloys, Acta Mater. 108 (2016) 304–316. https://doi.org/10.1016/j.actamat.2016.02.023
[7] Y.B. Chun, C.H.J. Davies, Twinning-induced anomaly in the yield surface of highly textured Mg–3Al–1Zn plate, Scr. Mater. 64 (2011) 958–961. https://doi.org/10.1016/j.scriptamat.2011.01.044
[8] H. Qiao, X.Q. Guo, A.L. Oppedal, H. El Kadiri, P.D. Wu, S.R. Agnew, Twin-induced hardening in extruded Mg alloy AM30, Mater. Sci. Eng., A. 687 (2017) 17–27. https://doi.org/10.1016/j.msea.2016.12.123
[9] C.S. Roberts, Magnesium and its Alloys, John Wiley & Sons, Inc., New York, 1960. https://doi.org/10.1002/9781118985960.meh107
[10] F.E. Hauser, P.R. Landon, J.E. Dorn, Deformation and fracture mechanisms of polycrystalline magnesium at low temperatures, Transactions of American Society for Metals. 48 (1956) 986–1002.
[11] E.C. Burke, W.R. Hibbard, Plastic Deformation of Magnesium Single Crystals, JOM. 4 (1952) 295–303. https://doi.org/10.1007/BF03397694
[12] R.E. Reed-Hill, W.D. Robertson, Pyramidal slip in magnesium, Trans. TMS-AIME. 212 (1958) 256–259.
[13] E.W. Kelley, W.F. Hosford, Plane-strain compression of magnesium and magnesium alloy crystals, Trans Met Soc AIME. 242 (1968) 5–13.
[14] X. Lou, M. Li, R. Boger, S. Agnew, R. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast. 23 (2007) 44–86. https://doi.org/10.1016/j.ijplas.2006.03.005
[15] H. Wang, Y. Wu, P.D. Wu, K.W. Neale, Numerical analysis of large strain simple shear and fixed-end torsion of HCP polycrystals, Comput. Mater. Contin. 19 (2010) 255. https://doi.org/10.3970/cmc.2010.019.255
[16] H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet, Int. J. Solids Struct. 47 (2010) 2905–2917. https://doi.org/10.1016/j.ijsolstr.2010.06.016
[17] M. Sabbaghian, N. Fakhar, P. Nagy, K. Fekete, J. Gubicza, Investigation of shear and tensile mechanical properties of ZK60 Mg alloy sheet processed by rolling and sheet extrusion, Mater. Sci. Eng., A. 828 (2021) 142098. https://doi.org/10.1016/j.msea.2021.142098
[18] P.D. Wu, H. Wang, K.W. Neale, On the large strain torsion of HCP polycrystals, Int. J. Appl. Mechanics. 04 (2012) 1250024. https://doi.org/10.1142/S175882511250024X
[19] H. Wang, X. Zhang, W. Wu, P.K. Liaw, K. An, Q. Yu, P. Wu, On the torsional and coupled torsion-tension/compression behavior of magnesium alloy solid rod: A crystal plasticity evaluation, Int. J. Plast. 151 (2022) 103213. https://doi.org/10.1016/j.ijplas.2022.103213
[20] D. Tang, K. Zhou, W. Tang, P. Wu, H. Wang, On the inhomogeneous deformation behavior of magnesium alloy beam subjected to bending, Int. J. Plast. 150 (2022) 103180. https://doi.org/10.1016/j.ijplas.2021.103180
[21] K. Zhou, X. Sun, H. Wang, X. Zhang, D. Tang, W. Tang, Y. Jiang, P. Wu, H. Wang, Texture-dependent bending behaviors of extruded AZ31 magnesium alloy plates, J. Magnes. Alloy (2023) S2213956723000294. https://doi.org/10.1016/j.jma.2023.02.003
[22] S. Gollapudi, M.A. Azeem, A. Tewari, U. Ramamurty, Orientation dependence of the indentation impression morphology in a Mg alloy, Scr. Mater. 64 (2011) 189–192. https://doi.org/10.1016/j.scriptamat.2010.09.041
[23] J.-H. Shin, S.-H. Kim, T.K. Ha, K.H. Oh, I.-S. Choi, H.N. Han, Nanoindentation study for deformation twinning of magnesium single crystal, Scr. Mater. 68 (2013) 483–486. https://doi.org/10.1016/j.scriptamat.2012.11.030
[24] J. Bočan, J. Maňák, A. Jäger, Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation, Mater. Sci. Eng. A 644 (2015) 121–128. https://doi.org/10.1016/j.msea.2015.07.055
[25] H. Kitahara, T. Mayama, K. Okumura, Y. Tadano, M. Tsushida, S. Ando, Anisotropic deformation induced by spherical indentation of pure Mg single crystals, Acta Mater. 78 (2014) 290–300. https://doi.org/10.1016/j.actamat.2014.06.039
[26] R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J.M. Molina-Aldareguia, Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium, Acta Mater. 93 (2015) 114–128. https://doi.org/10.1016/j.actamat.2015.04.005
[27] C. Zambaldi, C. Zehnder, D. Raabe, Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation, Acta Mater. 91 (2015) 267–288. https://doi.org/10.1016/j.actamat.2015.01.046
[28] P.D. Wu, X.Q. Guo, H. Qiao, D.J. Lloyd, A constitutive model of twin nucleation, propagation and growth in magnesium crystals, Mater. Sci. Eng. A 625 (2015) 140–145. https://doi.org/10.1016/j.msea.2014.11.096
[29] H. Wang, P.D. Wu, J. Wang, C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms, Int. J. Plast. 49 (2013) 36–52. https://doi.org/10.1016/j.ijplas.2013.02.016
[30] B. Selvarajou, J.-H. Shin, T.K. Ha, I. Choi, S.P. Joshi, H.N. Han, Orientation-dependent indentation response of magnesium single crystals: Modeling and experiments, Acta Mater. 81 (2014) 358–376. https://doi.org/10.1016/j.actamat.2014.08.042