Strain gradient calculation as a basis for localized roving slip prediction in macroscopic forming simulation of non-crimp fabrics

Strain gradient calculation as a basis for localized roving slip prediction in macroscopic forming simulation of non-crimp fabrics

WANK Jan Paul, SCHÄFER Bastian, MITSCH Johannes, KÄRGER Luise

download PDF

Abstract. The utilization of the Finite Element Method (FEM) in forming simulation presents the possibility for a thorough examination of the deformation behavior exhibited by engineering textiles during the draping processes. In macroscopic forming simulations the relevant forming effects are depicted in a homogenized way. Slippage of fibers is an essential deformation mechanism of non-crimp fabrics (NCF). Experimentally, this is already observed at coupon level performing the bias-extension test (BET). Significant slippage occurs locally in the transition areas between shear zones with deviating shear angles. In existing macroscopic simulation approaches, roving slippage is only considered homogenized over the shear zones. A localized slip between individual fiber rovings cannot be modelled. Therefore, in the present work a neighboring element method for ABAQUS/EXPLICIT is introduced. This method uses multiple subroutines to transfer information between elements. The functionality of the neighboring method is confirmed by calculating a cross element gradient of the shear angle. The calculation of the shear angle gradient is shown in the simulation of the BET, giving rise to the transition zones which have been experimentally highlighted.

Keywords
Non-Crimp Fabrics, Forming Simulation, Local Effects

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: WANK Jan Paul, SCHÄFER Bastian, MITSCH Johannes, KÄRGER Luise, Strain gradient calculation as a basis for localized roving slip prediction in macroscopic forming simulation of non-crimp fabrics, Materials Research Proceedings, Vol. 41, pp 467-476, 2024

DOI: https://doi.org/10.21741/9781644903131-52

The article was published as article 52 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. Henning, L. Kärger, D. Dörr, F.J. Schirmaier, J. Seuffert, A. Bernath, Fast processing and continuous simulation of automotive structural composite components, Composites Science and Technology 171 (2019) 261–279. https://doi.org/10.1016/j.compscitech.2018.12.007
[2] C. Krogh, J.A. Kepler, J. Jakobsen, Pure and simple: investigating the in-plane shear kinematics of a quasi-unidirectional glass fiber non-crimp fabric using the bias-extension test, Int J Mater Form 19 (2021) 1483–1495. https://doi.org/10.1007/s12289-021-01642-8
[3] P. Böhler, F. Härtel, P. Middendorf, Identification of Forming Limits for Unidirectional Carbon Textiles in Reality and Mesoscopic Simulation, Key Engineering Materials 554-557 (2013) 423–432. https://doi.org/10.4028/www.scientific.net/KEM.554-557.423
[4] N. Hamila, P. Boisse, Locking in simulation of composite reinforcement deformations. Analysis and treatment, Composites Part A: Applied Science and Manufacturing 53 (2013) 109–117. https://doi.org/10.1016/j.compositesa.2013.06.001
[5] E. Kunze, S. Galkin, R. Böhm, M. Gude, L. Kärger, The Impact of Draping Effects on the Stiffness and Failure Behavior of Unidirectional Non-Crimp Fabric Fiber Reinforced Composites, Materials 13 (2020). https://doi.org/10.3390/ma13132959
[6] F.J. Schirmaier, K.A. Weidenmann, L. Kärger, F. Henning, Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF), Composites Part A: Applied Science and Manufacturing 80 (2016) 28–38. https://doi.org/10.1016/j.compositesa.2015.10.004
[7] G. Lebrun, M.N. Bureau, J. Denault, Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics, Selected Papers from the Symposium on Design and Manufacturing of Composites 61 (2003) 341–352. https://doi.org/10.1016/S0263-8223(03)00057-6
[8] J. Launay, G. Hivet, A.V. Duong, P. Boisse, Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements, Composites Science and Technology 68 (2008) 506–515. https://doi.org/10.1016/j.compscitech.2007.06.021
[9] S. Bel, P. Boisse, F. Dumont, Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements during Preforming, Applied Composite Materials 19 (2012) 513–528. https://doi.org/10.1007/s10443-011-9207-x
[10] B. Schäfer, R. Zheng, N. Naouar, L. Kärger, Membrane behavior of uni- and bidirectional non-crimp fabrics in off-axis-tension tests, Int J Mater Form 16 (2023) 1–15. https://doi.org/10.1007/s12289-023-01792-x
[11] M.A. Khan, T. Mabrouki, E. Vidal-Sallé, P. Boisse, Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark, Journal of Materials Processing Technology 210 (2010) 378–388. https://doi.org/10.1016/j.jmatprotec.2009.09.027
[12] M. Machado, M. Fischlschweiger, Z. Major, A rate-dependent non-orthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites, Composites Part A: Applied Science and Manufacturing 80 (2016) 194–203. https://doi.org/10.1016/j.compositesa.2015.10.028
[13] F. Schäfer, H.O. Werner, F. Henning, L. Kärger, A hyperelastic material model considering biaxial coupling of tension–compression and shear for the forming simulation of woven fabrics, Composites Part A: Applied Science and Manufacturing 165 (2023). https://doi.org/10.1016/j.compositesa.2022.107323
[14] Y. Gong, D. Yan, Y. Yao, R. Wei, H. Hu, P. Xu, X. Peng, An Anisotropic Hyperelastic Constitutive Model with Tension–Shear Coupling for Woven Composite Reinforcements, Int. J. Appl. Mechanics 09 (2017). https://doi.org/10.1142/S1758825117500831
[15] Y. Yao, X. Huang, X. Peng, P. Liu, G. Youkun, An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling, Textile Research Journal 89 (2019) 434–444. https://doi.org/10.1177/0040517517748495
[16] S. Lomov, D. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, S. Hirosawa, Meso-FE modelling of textile composites: Road map, data flow and algorithms, Composites Science and Technology 67 (2007) 1870–1891. https://doi.org/10.1016/j.compscitech.2006.10.017
[17] J. Sirtautas, A.K. Pickett, P. Lépicier, A mesoscopic model for coupled drape-infusion simulation of biaxial Non-Crimp Fabric, Composites Part B: Engineering 47 (2013) 48–57. https://doi.org/10.1016/j.compositesb.2012.09.088
[18] G. Creech, A. Pickett, Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis, Journal of Materials Science 41 (2006) 6725–6736. https://doi.org/10.1007/s10853-006-0213-6
[19] F.J. Schirmaier, D. Dörr, F. Henning, L. Kärger, A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF), Composites Part A: Applied Science and Manufacturing 102 (2017) 322–335. https://doi.org/10.1016/j.compositesa.2017.08.009
[20] B. Schäfer, S. Haas, P. Boisse, L. Kärger, Investigation of the Membrane Behavior of UD-NCF in Macroscopic Forming Simulations, Key Engineering Materials 926 (2022) 1413–1422. https://doi.org/10.4028/p-2977b4
[21] V.N. Khiêm, H. Krieger, M. Itskov, T. Gries, S.E. Stapleton, An averaging based hyperelastic modeling and experimental analysis of non-crimp fabrics, International Journal of Solids and Structures. https://doi.org/10.1016/j.ijsolstr.2016.12.018
[22] B. Schäfer, D. Dörr, R. Zheng, N. Naouar, L. Kärge, A hyperelastic approach for modeling the membrane behavior in finite element forming simulation of unidirectional non-crimp fabrics (UD-NCF), Composites Part A: Applied Science and Manufacturing (2023).
[23] Q. Steer, J. Colmars, N. Naouar, P. Boisse, Modeling and analysis of in-plane bending in fibrous reinforcements with rotation-free shell finite elements., International Journal of Solids and Structures 222-223 (2021). https://doi.org/10.1016/j.ijsolstr.2021.03.001
[24] Y. Aimène, E. Vidal-Sallé, B. Hagège, F. Sidoroff, P. Boisse, A Hyperelastic Approach for Composite Reinforcement Large Deformation Analysis, Journal of Composite Materials 44 (2010) 5–26. https://doi.org/10.1177/0021998309345348
[25] C.T. Poppe, C. Krauß, F. Albrecht, L. Kärger, A 3D process simulation model for wet compression moulding, Composites Part A: Applied Science and Manufacturing 50 (2021) 106379. https://doi.org/10.1016/j.compositesa.2021.106379
[26] J.A. White, H. Nishikawa, R.A. Baurle, Weighted Least-squares Cell-Average Gradient Construction Methods For The VULCAN-CFD Second-Order Accurate Unstructured Grid Cell-Centered Finite-Volume Solver, AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-0127
[27] S. Seo, C. Lee, E. Kim, K. Yune, C. Kim, Least-square Switching Process for Accurate and Efficient Gradient Estimation on Unstructured Grid, Journal of the Korean Society for Industrial and Applied Mathematics 24 (2020) 1–22. https://doi.org/10.12941/JKSIAM.2020.24.001
[28] T. Belytschko, W.K. Liu, B. Moran, K.I. Elkhodary, Nonlinear finite elements for continua and structures, 2nd ed., Wiley, Chichester, 2014.