A solid-beam approach for mesoscopic analysis of textile reinforcements forming simulation

A solid-beam approach for mesoscopic analysis of textile reinforcements forming simulation

LACROIX Baptiste, COLMARS Julien, PLATZER Auriane, NAOUAR Naim, VIDAL-SALLÉ Emmanuelle, BOISSE Philippe

download PDF

Abstract. Draping and forming of textile reinforcements are usually performed thanks to finite element models with continuous media assumption. The specific purpose of mesoscale model is to faithfully reproduces defects like yarn buckling or gapping during the process. Such defects are crucial outputs because they have huge impacts on mechanical and permeability properties of the whole textile. However, mesoscopic analysis usually leads to expensive computation cost and needs to be optimized to propose a cost-effective response to this problem. Thus, this document aims to develop a solid-beam approach for mesoscale model, with coarse geometric assumption but with finite element and constitutive law formulation taking into account the fibrous aspect of the fabric.

Keywords
Meso-Scale Model, Solid-Beam, Fibrous Element, Hyperelastic

Published online 4/24/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: LACROIX Baptiste, COLMARS Julien, PLATZER Auriane, NAOUAR Naim, VIDAL-SALLÉ Emmanuelle, BOISSE Philippe, A solid-beam approach for mesoscopic analysis of textile reinforcements forming simulation, Materials Research Proceedings, Vol. 41, pp 449-456, 2024

DOI: https://doi.org/10.21741/9781644903131-50

The article was published as article 50 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, et P. Boisse, « Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography », Composite Structures, vol. 116, p. 165 176, sept. 2014. https://doi.org/10.1016/j.compstruct.2014.04.026
[2] G. Hivet et P. Boisse, « Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis », Finite Elements in Analysis and Design, vol. 42, no 1, p. 25 49, oct. 2005. https://doi.org/10.1016/j.finel.2005.05.001
[3] P. Badel, E. Vidal-Sallé, et P. Boisse, « Large deformation analysis of fibrous materials using rate constitutive equations », Computers & Structures, vol. 86, no 11 12, p. 1164 1175, juin 2008. https://doi.org/10.1016/j.compstruc.2008.01.009
[4] R. Zheng, « A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach », Materials Research Proceedings 28, mai 2023, p. 285 292. doi: 10.21741/9781644902479-31
[5] Q. T. Nguyen et al., « Mesoscopic scale analyses of textile composite reinforcement compaction », Composites Part B: Engineering, vol. 44, no 1, p. 231 241, janv. 2013. https://doi.org/10.1016/j.compositesb.2012.05.028
[6] P. Boisse, N. Hamila, E. Vidal-Sallé, et F. Dumont, « Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses », Composites Science and Technology, vol. 71, no 5, p. 683 692, mars 2011. https://doi.org/10.1016/j.compscitech.2011.01.011
[7] B. Chen, J. Colmars, N. Naouar, et P. Boisse, « A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming », Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106558, oct. 2021. https://doi.org/10.1016/j.compositesa.2021.106558
[8] A. Iwata, T. Inoue, N. Naouar, P. Boisse, et S. V. Lomov, « Coupled meso-macro simulation of woven fabric local deformation during draping », Composites Part A: Applied Science and Manufacturing, vol. 118, p. 267 280, mars 2019. https://doi.org/10.1016/j.compositesa.2019.01.004
[9] J. Wang, P. Wang, N. Hamila, et P. Boisse, « Meso-Macro Simulations of the Forming of 3D Non-Crimp Woven Fabrics », Textiles, vol. 2, no 1, p. 112 123, févr. 2022. https://doi.org/10.3390/textiles2010006
[10] S. Gatouillat, A. Bareggi, E. Vidal-Sallé, et P. Boisse, « Meso modelling for composite preform shaping – Simulation of the loss of cohesion of the woven fibre network », Composites Part A: Applied Science and Manufacturing, vol. 54, p. 135 144, nov. 2013. https://doi.org/10.1016/j.compositesa.2013.07.010
[11] P. Boisse, N. Hamila, et A. Madeo, « The difficulties in modeling the mechanical behaviour of textile composite reinforcements with standard continuum mechanics of Cauchy. Some possible remedies », International Journal of Solids and Structures, vol. 154, p. 55 65, déc. 2018. https://doi.org/10.1016/j.ijsolstr.2016.12.019
[12] P. Boisse, J. Colmars, N. Hamila, N. Naouar, et Q. Steer, « Bending and wrinkling of composite fibre preforms and prepregs. A review and new developments in the draping simulations », Composites Part B: Engineering, vol. 141, p. 234 249, mai 2018. https://doi.org/10.1016/j.compositesb.2017.12.061
[13] D. Dörr, F. J. Schirmaier, F. Henning, et L. Kärger, « A viscoelastic approach for modeling bending behaviour in finite element forming simulation of continuously fibre reinforced composites », Composites Part A: Applied Science and Manufacturing, vol. 94, p. 113 123, mars 2017. https://doi.org/10.1016/j.compositesa.2016.11.027
[14] B. Liang, J. Colmars, et P. Boisse, « A shell formulation for fibrous reinforcement forming simulations », Composites Part A: Applied Science and Manufacturing, vol. 100, p. 81 96, sept. 2017. https://doi.org/10.1016/j.compositesa.2017.04.024
[15] R. Bai, J. Colmars, N. Naouar, et P. Boisse, « A specific 3D shell approach for textile composite reinforcements under large deformation », Composites Part A: Applied Science and Manufacturing, vol. 139, p. 106135, déc. 2020. https://doi.org/10.1016/j.compositesa.2020.106135
[16] M. Brunet et F. Sabourin, « A simplified triangular shell element with a necking criterion for 3-D sheet-forming analysis », Journal of Materials Processing Technology, vol. 50, no 1 4, p. 238 251, mars 1995. https://doi.org/10.1016/0924-0136(94)01384-D
[17] F. Sabourin et M. Vives, « Eléments finis triangulaires pour la simulation de l’emboutissage: Aspects de base », Revue Européenne des Éléments Finis, vol. 10, no 1, p. 7 53, janv. 2001. https://doi.org/10.1080/12506559.2001.11869238
[18] F. Sabourin et M.l Brunet,”Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis”, Engineering Computations, Vol. 23 Iss 5 pp. 469 – 502, juil 2006. https://doi.org/10.1108/02644400610671090
[19] T. Belytschko et al., « Non linear finite elements for continua and structures », first ed, John Wiley & Sons, 1998.
[20] E. De Bilbao, D. Soulat, G. Hivet, et A. Gasser, « Experimental Study of Bending Behaviour of Reinforcements », Exp Mech, vol. 50, no 3, p. 333 351, mars 2010. https://doi.org/10.1007/s11340-009-9234-9
[21] T. Abdul Ghafour, J. Colmars, et P. Boisse, « The importance of taking into account behaviour irreversibilities when simulating the forming of textile composite reinforcements », Composites Part A: Applied Science and Manufacturing, vol. 127, p. 105641, déc. 2019. https://doi.org/10.1016/j.compositesa.2019.105641
[22] P. Badel, E. Vidal-Sallé, E. Maire, et P. Boisse, « Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale », Composites Science and Technology, vol. 68, no 12, p. 2433 2440, sept. 2008. https://doi.org/10.1016/j.compscitech.2008.04.038
[23] A. Charmetant, E. Vidal-Sallé, et P. Boisse, « Hyperelastic modelling for mesoscopic analyses of composite reinforcements », Composites Science and Technology, vol. 71, no 14, p. 1623 1631, sept. 2011. https://doi.org/10.1016/j.compscitech.2011.07.004
[24] J. Huang, P. Boisse, N. Hamila, et Y. Zhu, « Simulation of Wrinkling during Bending of Composite Reinforcement Laminates », Materials, vol. 13, no 10, p. 2374, mai 2020. https://doi.org/10.3390/ma13102374