Identification of the thermal conductivity of polymer materials during their crystallization

Identification of the thermal conductivity of polymer materials during their crystallization

MOUSSALLEM Rita, EL RASSY Elissa, FARAJ Jalal, LEFEVRE Nicolas, BAILLEUL Jean-Luc

download PDF

Abstract. Controlling the quality of industrial products requires an accurate comprehension of the material’s behavior during the several transformation phases. An accurate estimation of the heat transfers taking place throughout the production phases necessitates the exact knowledge of the thermophysical properties. These properties are well known in the solid state, however they are less mastered in the liquid state and during transformation. The main objective of this research project is to estimate the evolution of the thermal conductivity during transformation by solving an inverse heat conduction problem. The calculation outputs ought to describe the evolution of the thermal conductivity function of two coupled fields: the temperature and the transformation degree. The inverse method relies on a finite difference numerical model and a hybrid optimization algorithm, combining a stochastic method with a deterministic method. The temperature evolution within a thermoplastic undergoing transformation is measured with the help of an instrumented mold. The thermal conductivity values are identified by minimizing the discrepancy between the experimentally measured temperature profile and the one numerically simulated. The acquired results are compared with the mixing law, classically used to take into account the phase change of a material. It is observed that the values acquired by the established inverse method reproduce the measured temperature profiles more accurately than the mixing law.

Keywords
Thermal Conductivity, Thermoplastics, Crystallization, Inverse Method

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: MOUSSALLEM Rita, EL RASSY Elissa, FARAJ Jalal, LEFEVRE Nicolas, BAILLEUL Jean-Luc, Identification of the thermal conductivity of polymer materials during their crystallization, Materials Research Proceedings, Vol. 41, pp 2668-2677, 2024

DOI: https://doi.org/10.21741/9781644903131-292

The article was published as article 292 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] « Polymer processing: Materials Science and Technology: Vol 19, No 9 ». https://www.tandfonline.com/doi/abs/10.1179/026708303225004738
[2] D. G. Baird et D. I. Collias, Polymer Processing: Principles and Design. John Wiley & Sons, 2014.
[3] Y. K. Godovsky, Thermophysical Properties of Polymers. Springer Science & Business Media, 2012.
[4] « A novel inverse method for identification of 3D thermal conductivity coefficients of anisotropic media by the boundary element analysis – ScienceDirect ». https://www.sciencedirect.com/science/article/pii/S0017931015005177
[5] W. P. Adamczyk, R. A. Białecki, et T. Kruczek, « Retrieving thermal conductivities of isotropic and orthotropic materials », Appl. Math. Model., vol. 40, no 4, p. 3410 3421, févr. 2016. https://doi.org/10.1016/j.apm.2015.10.028
[6] E. El Rassy, Y. Billaud, et D. Saury, « Simultaneous and direct identification of thermophysical properties for orthotropic materials », Measurement, vol. 135, p. 199 212, mars 2019. https://doi.org/10.1016/j.measurement.2018.11.048.
[7] S. Tarasovs et A. Aniskevich, « Identification of the anisotropic thermal conductivity by an inverse solution using the transient plane source method », Measurement, vol. 206, p. 112252, janv. 2023. https://doi.org/10.1016/j.measurement.2022.112252
[8] M. Mierzwiczak et J. A. Kołodziej, « The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem », Int. J. Heat Mass Transf., vol. 54, no 4, p. 790 796, janv. 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.024
[9] « Estimation of linearly temperature-dependent thermal conductivity using an inverse analysis – ScienceDirect ». https://www.sciencedirect.com/science/article/pii/S1290072916314168
[10] R. Le Goff, D. Delaunay, N. Boyard, Y. Jarny, T. Jurkowski, et R. Deterre, « On-line temperature meaurements for polymer thermal conductivity estimation under injection molding conditions ». International Journal of Heat a,d Mass Transfer 52 (2009) 1443-1450, 2009.
[11] X. Tardif, A. Agazzi, V. Sobotka, N. Boyard, Y. Jarny, et D. Delaunay, « A multifunctional device to determine specific volume, thermal conductivity and crystallization kinetics of semi-crystalline polymers ». Polymer Testing 31 (2012) 819-827.
[12] R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, et E. Koscher, « Study and modeling of heat transfer during the solidification of semi-crystalline polymers », Int. J. Heat Mass Transf., vol. 48, no 25, p. 5417 5430, déc. 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.015
[13] A. Levy, « Robust Numerical Resolution of Nakamura Crystallization Kinetics », Int. J. Theor. Appl. Math., vol. 3, no 4, p. 143, 2017. https://doi.org/10.11648/j.ijtam.20170304.13
[14] « Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions – Nakamura – 1972 – Journal of Applied Polymer Science – Wiley Online Library ». https://onlinelibrary.wiley.com/doi/abs/10.1002/app.1972.070160503
[15] « Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition – Nakamura – 1973 – Journal of Applied Polymer Science – Wiley Online Library ». https://onlinelibrary.wiley.com/doi/abs/10.1002/app.1973.070170404
[16] J. H. Holland, « Genetic Algorithms », Sci. Am., vol. 267, no 1, p. 66 73, 1992.
[17] R. H. Byrd, J. C. Gilbert, et J. Nocedal, « A trust region method based on interior point techniques for nonlinear programming », Math. Program., vol. 89, no 1, p. 149 185, nov. 2000. https://doi.org/10.1007/PL00011391
[18] R. Moussalem, E. El Rassy, J. Faraj, et J.-L. Bailleul, « Identification of the thermophysical properties of polymer and composite materials during their transformation », Proceedings of the 17th international heat transfer conference, Cape Town, South Africa, août 2023.
[19] R. Moussallem, E. El Rassy, J. Faraj, et J.-L. Bailleul, « A New Method for Identifying the Thermal Conductivity of Semi-Crystalline Thermoplastics During Their Crystallization ». Rochester, NY, 22 décembre 2023. https://doi.org/10.2139/ssrn.4673128
[20] B. Pignon, X. Tardif, N. Lefèvre, V. Sobotka, et N. Boyard, « A new PVT device for high performance thermoplastics: Heat transfer analysis and crystallization kinetics identification ». Polymer Testing 45 (2015) 152-160.
[21] J. H. Dymond et R. Malhotra, « The Tait equation: 100 years on », Int. J. Thermophys., vol. 9, no 6, p. 941 951, nov. 1988. https://doi.org/10.1007/BF01133262
[22] « Crystallization kinetics during polymer processing—Analysis of available approaches for process modeling – Patel – 1991 – Polymer Engineering & Science – Wiley Online Library ». https://4spepublications.onlinelibrary.wiley.com/doi/abs/10.1002/pen.760311008
[23] M. Avrami, « Kinetics of Phase Change. I General Theory », J. Chem. Phys., vol. 7, no 12, p. 1103 1112, déc. 1939. https://doi.org/10.1063/1.1750380
[24] M. Avrami, « Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei », J. Chem. Phys., vol. 8, no 2, p. 212 224, févr. 1940. https://doi.org/10.1063/1.1750631
[25] J. A. Cape et G. W. Lehman, « Temperature and Finite Pulse‐Time Effects in the Flash Method for Measuring Thermal Diffusivity », J. Appl. Phys., vol. 34, no 7, p. 1909 1913, juill. 1963. https://doi.org/10.1063/1.1729711