Fatigue resistance of deep drawn parts: A scale bridging simulative study using representative volume elements and crystal plasticity simulations

Fatigue resistance of deep drawn parts: A scale bridging simulative study using representative volume elements and crystal plasticity simulations

FEHLEMANN Niklas, HENRICH Manuel, MÜLLER Martina, KÖNEMANN Markus, BERGS Thomas, MÜNSTERMANN Sebastian

download PDF

Abstract. The mechanical properties of formed components are determined by the interaction between the microstructure and the load path of the forming process. To investigate and understand these effects, micromechanical simulation concepts can be used, such as statistically Representative Volume Elements (sRVE) coupled with crystal plasticity simulations. This study presents a concept that uses sRVE simulations to quantify the influence of three different deep drawing load paths on the fatigue resistance of DP800 steel. The first step is a scale-bridging simulation approach that employs macroscopic simulations of the deep drawing process to extract the boundary conditions for the sRVE simulations with Damask. Subsequent cyclic loading is then simulated. 50 sRVE are computed for each load path to estimate fatigue resistance based on a Fatigue Indicator Parameter. The results indicate that fatigue resistance increases with increasing deformation-induced strain hardening. Additionally, a positive correlation between the martensitic ligament structures and fatigue resistance was observed.

Keywords
Deep Drawing, Fatigue, Representative Volume Elements, Crystal Plasticity

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: FEHLEMANN Niklas, HENRICH Manuel, MÜLLER Martina, KÖNEMANN Markus, BERGS Thomas, MÜNSTERMANN Sebastian, Fatigue resistance of deep drawn parts: A scale bridging simulative study using representative volume elements and crystal plasticity simulations, Materials Research Proceedings, Vol. 41, pp 2134-2143, 2024

DOI: https://doi.org/10.21741/9781644903131-235

The article was published as article 235 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] European Commission, European Green Deal. Available at https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.
[2] G. Hirt, A.E. Tekkaya, T. Clausmeyer, and J. Lohmar, Potential and status of damage controlled forming processes, Production Engineering 14 (2020), pp. 1–4. https://doi.org/10.1007/s11740-019-00948-6
[3] A.E. Tekkaya, N. Ben Khalifa, O. Hering, R. Meya, S. Myslicki, and F. Walther, Forming-induced damage and its effects on product properties, CIRP Annals 66 (2017), pp. 281–284. https://doi.org/10.1016/j.cirp.2017.04.113
[4] M. Müller, T. Herrig, and T. Bergs, Numerical analysis of the load paths and the resulting damage evolution during deep drawing of dual-phase steel, IOP Conference Series: Materials Science and Engineering 1284 (2023), p. 12006. https://doi.org/10.1088/1757-899X/1284/1/012006
[5] P.R. Tiwari, A. Rathore, and M.G. Bodkhe, Factors affecting the deep drawing process – A review, Materials Today: Proceedings 56 (2022), pp. 2902–2908. https://doi.org/10.1016/j.matpr.2021.10.189
[6] F. Qayyum, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl, Modeling the Local Deformation and Transformation Behavior of Cast X8CrMnNi16-6-6 TRIP Steel and 10% Mg-PSZ Composite Using a Continuum Mechanics-Based Crystal Plasticity Model, Crystals 10 (2020), p. 221. https://doi.org/10.3390/cryst10030221
[7] D. Reimann, K. Nidadavolu, H. ul Hassan, N. Vajragupta, T. Glasmachers, P. Junker, and A. Hartmaier, Modeling Macroscopic Material Behavior With Machine Learning Algorithms Trained by Micromechanical Simulations, Frontiers in Materials 6 (2019). Https://doi.org/10.3389/fmats.2019.00181
[8] S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers, Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science 96 (2018), pp. 322–384. https://doi.org/10.1016/j.pmatsci.2018.02.003
[9] J.P.M. Hoefnagels, B.G. Vossen, and C.C. Tasan, Electron Micrographic Digital Image Correlation: Method Optimization and Microstructural banding Case Study, in: Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4, T. Proulx, ed., Conference Proceedings of the Society for Experimental Mechanics Series. Springer New York, New York, NY, 2013, pp. 71–77. https://doi.org/10.1007/978-1-4419-9796-8_10
[10] F. Pütz, N. Fehlemann, V. Göksu, M. Henrich, M. Könemann, and S. Münstermann, A data driven computational microstructure analysis on the influence of martensite banding on damage in DP-steels, Computational Materials Science 218 (2023), p. 111903. https://doi.org/10.1016/j.commatsci.2022.111903
[11] R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal fatigue in engineering, 2nd edn. Wiley, |c c2001, New York, 2001.
[12] K. Gillner and S. Münstermann, Numerically predicted high cycle fatigue properties through representative volume elements of the microstructure, International Journal of Fatigue 105 (2017), pp. 219–234. https://doi.org/10.1016/j.ijfatigue.2017.09.002
[13] J. Polák and J. Man, Mechanisms of extrusion and intrusion formation in fatigued crystalline materials, Materials Science and Engineering: A 596 (2014), pp. 15–24. https://doi.org/10.1016/j.msea.2013.12.005
[14] J. Polák, J. Man, T. Vystavěl, and M. Petrenec, The shape of extrusions and intrusions and initiation of stage I fatigue cracks, Materials Science and Engineering: A 517 (2009), pp. 204–211. https://doi.org/10.1016/j.msea.2009.03.070
[15] N. Sayer, E. Natkowski, P. Sonnweber-Ribic, and S. Münstermann, A novel microscale fatigue failure indicator considering plastic irreversibility for microstructure-based lifetime simulation, International Journal of Fatigue 163 (2022), p. 107115. https://doi.org/10.1016/j.ijfatigue.2022.107115
[16] R. Meya, C. Kusche, C. Löbbe, T. Al-Samman, S. Korte-Kerzel, and A. Tekkaya, Global and High-Resolution Damage Quantification in Dual-Phase Steel Bending Samples with Varying Stress States, Metals 9 (2019), p. 319. https://doi.org/10.3390/met9030319
[17] C. Tian, D. Ponge, L. Christiansen, and C. Kirchlechner, On the mechanical heterogeneity in dual phase steel grades: Activation of slip systems and deformation of martensite in DP800, Acta Materialia 183 (2020), pp. 274–284. https://doi.org/10.1016/j.actamat.2019.11.002
[18] M.A. Wollenweber, S. Medghalchi, L.R. Guimarães, N. Lohrey, C.F. Kusche, U. Kerzel, T. Al-Samman, and S. Korte-Kerzel, On the damage behaviour in dual-phase DP800 steel deformed in single and combined strain paths, Materials & Design 231 (2023), p. 112016. https://doi.org/10.1016/j.matdes.2023.112016
[19] N. Fehlemann, Y. Sparrer, F. Pütz, M. Konemann, and S. Münstermann, Influence of synthetically generated inclusions on the stress accumulation and concentration in X65 pipeline steel, IOP Conference Series: Materials Science and Engineering 1157 (2021), p. 12056. https://doi.org/10.1088/1757-899X/1157/1/012056
[20] M. Henrich, N. Fehlemann, F. Bexter, M. Neite, L. Kong, F. Shen, M. Könemann, M. Dölz, and S. Münstermann, DRAGen – a Deep Learning Supported sRVE Generator Framework for Complex Microstructure Models, Heliyon 9 (2023), e19003. https://doi.org/10.1016/j.heliyon.2023.e19003
[21] D. Yan, C.C. Tasan, and D. Raabe, High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels, Acta Materialia 96 (2015), pp. 399–409. https://doi.org/10.1016/j.actamat.2015.05.038
[22] N. Fehlemann, A.L. Suarez Aguilera, S. Sandfeld, F. Bexter, M. Neite, D. Lenz, M. Könemann, and S. Münstermann, Identification of Martensite Bands in Dual‐Phase Steels: A Deep Learning Object Detection Approach Using Faster Region‐Based‐Convolutional Neural Network, steel research int. 94 (2023). Https://doi.org/10.1002/srin.202200836
[23] F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K. Janssens, N. Jia, P. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe, DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale, Computational Materials Science 158 (2019), pp. 420–478. https://doi.org/10.1016/j.commatsci.2018.04.030
[24] M. Henrich, M. Dölz, and S. Münstermann, Development of a Numerical Framework for Microstructure Sensitive Fatigue Life Investigations, in: Volume 2: Computer Technology & Bolted Joints; Design & Analysis, ASME 2023 Pressure Vessels & Piping Conference, Atlanta, Georgia, USA, Jul. 16-21, 2023. American Society of Mechanical Engineers, 2023. https://doi.org/10.1115/PVP2023-106419
[25] S. Beretta and Y. Murakami, STATISTICAL ANALYSIS OF DEFECTS FOR FATIGUE STRENGTH PREDICTION AND QUALITY CONTROL OF MATERIALS, Fatigue Fract Eng Mat Struct 21 (1998), pp. 1049–1065. https://doi.org/10.1046/j.1460-2695.1998.00104.x
[26] P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe, A phase field model for damage in elasto-viscoplastic materials, Computer Methods in Applied Mechanics and Engineering 312 (2016), pp. 167–185. https://doi.org/10.1016/j.cma.2016.05.006