–
Combining experimental and FEM approaches to determine the influence of workpiece temperature on fundamental variables in the machining process
ORTIZ-DE-ZARATE Gorka, ARRIETA Iñaki M., SORIANO Denis, ORUNA Ainara, SOLER Daniel, ARRAZOLA Pedro J.
download PDFAbstract. In machining it is common practice to use lubricants to enhance machinability, resulting in improved part quality and reduced tool wear. However, emerging efforts are centered on mitigating the environmental impact of conventional lubricants by embracing cryogenic (e.g., LN2, CO2) and hot machining (e.g., plasma/laser-assisted machining, resistance/induction heating) among others. However, few studies analyse in depth how the initial temperature of the workpiece affects the fundamental variables of the cutting process and consequently the machinability. In this scenario, this research aimed to analyse the influence of the workpiece temperature from 20ºC to 500ºC, on fundamental process variables, such as forces, chip morphology, Primary Shear Zone length, shear angle, and temperatures, when orthogonal cutting steel AISI 1045 combining experimental and Finite Element Method (FEM) approaches.
Keywords
Hot Machining, FEM, Forces, Temperature, Orthogonal Cutting
Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: ORTIZ-DE-ZARATE Gorka, ARRIETA Iñaki M., SORIANO Denis, ORUNA Ainara, SOLER Daniel, ARRAZOLA Pedro J., Combining experimental and FEM approaches to determine the influence of workpiece temperature on fundamental variables in the machining process, Materials Research Proceedings, Vol. 41, pp 1972-1981, 2024
DOI: https://doi.org/10.21741/9781644903131-218
The article was published as article 218 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] P. J. Arrazola, F. Meslin, F. Le Maitre, S. Marya, Material flow stress sensitivity analysis in numerical cutting modeling, in AIP Conference Proceedings. 712/1 (2004) 1408–1413. https://doi.org/10.1063/1.1766726
[2] Z. Liao, A. la Monaca, J. Murray, A. Speidel, D. Ushmaev, A. Clare, D. Axinte, R. M’Saoubi, Surface integrity in metal machining-Part I: Fundamentals of surface characteristics and formation mechanisms, International Journal of Machine Tools and Manufacture. 162 (2021) 103687. https://doi.org/10.1016/j.ijmachtools.2020.103687
[3] G. W. A. Kui, S. Islam, M. M. Reddy, N. Khandoker, V. L. C. Chen, Recent progress and evolution of coolant usages in conventional machining methods : a comprehensive review, International Journal of Advanced Manufacturing Technology. 119/1-2 (2022) 3-40. https://doi.org/10.1007/s00170-021-08182-0
[4] E. Benedicto, D. Carou, E. M. Rubio, Technical, Economic and Environmental Review of the Lubrication/Cooling Systems Used in Machining Processes, Procedia engineering. 184 (2017) 99-116. https://doi.org/10.1016/j.proeng.2017.04.075
[5] S. H. Musavi, B. Davoodi, B. Eskandari, Evaluation of surface roughness and optimization of cutting parameters in turning of AA2024 alloy under different cooling-lubrication conditions using RSM method, Journal of Central South University. 27 (2020) 1714-1728. https://doi.org/10.1007/s11771-020-4402-2
[6] S. Pervaiz, I. Deiab, A. Rashid, M. Nicolescu, Minimal quantity cooling lubrication in turning of Ti6Al4V : Influence on surface roughness, cutting force and tool wear, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 231/9 (2017) 1542-1558. https://doi.org/10.1177/095440541559994
[7] K. Pandey, S. Datta, Hot machining of difficult-to-cut materials : A review, Materials Today: Proceedings. 44 (2021) 2710-2715. https://doi.org/10.1016/j.matpr.2020.12.687
[8] K. A. Mohammed, J. J. Abdulhameed, E. S. Al-Ameen, The effectiveness of hot machining process for the machinability of hard to cut materials: A review, IOP Conference Series: Materials Science and Engineering. 870/1 (2020) 012140. https://doi.org/10.1088/1757-899X/870/1/012140
[9] T. Platt, A. Meijer, D. Biermann, Conduction-based thermally assisted micromilling process for cutting difficult-to-machine materials, Journal of Manufacturing and Materials Processing. 4/2 (2020) 34. https://doi.org/10.3390/jmmp4020034
[10] N. M. Kamdar, P. V. K. Patel, Experimental Investigation of Machining Parameters of EN 36 Steel using Tungsten Carbide Cutting Tool during Hot Machining, International Journal of Engineering Research and Applications. 2 (2012) 1833-1838.
[11] N. Tosun, L. Ozler, Optimisation for hot turning operations with multiple performance characteristics, International Journal of Advanced Manufacturing Technology. 23 (2004) 777-782. https://doi.org/10.1007/s00170-003-1672-4
[12] R. D. Rajopadhye, M. T. Telsang, N. S. Dhole, Experimental Setup for Hot Machining Process to Increase Tool Life with Torch Flame, Second international conference on emerging trends in engineering (SICETE). (2009) 58–62.
[13] S. H. Moon, C. M. Lee, A study on the machining characteristics using plasma assisted machining of AISI 1045 steel and Inconel 718, International Journal of Mechanical Sciences. 142 (2018) 595-602. https://doi.org/10.1016/j.ijmecsci.2018.05.020
[14] M. Baili, V. Wagner, G. Dessein, J. Sallaberry, D. Lallement, An experimental investigation of hot machining with induction to improve Ti-5553 machinability, Applied mechanics and Materials. 62 (2011) 67–76. https://doi.org/10.4028/www.scientific.net/AMM.62.67
[15] S. Ranganathan, T. Senthilvelan, Multi-response optimization of machining parameters in hot turning using grey analysis, The International Journal of Advanced Manufacturing Technology. 56 (2011) 455-462. https://doi.org/10.1007/s00170-011-3198-5
[16] Y. H. Choi, C. M. Lee, A study on the machining characteristics of AISI 1045 steel and inconel 718 with circular cone shape in induction assisted machining, Journal of Manufacturing Processes. 34 (2018) 463-476. https://doi.org/10.1016/j.jmapro.2018.06.023
[17] O. Çakır, E. Altan, Hot machining of high manganese steel: a review, Trends in the development of machinery and associated technology. (2008) 105-108.
[18] N. R. Modh, G. D. Mistry, K. B. Rathod, An experimental investigation to optimize the process parameters of AISI 52100 steel in hot machining, International Journal of Engineering Research and Applications. 1/3 (2011) 483-489.
[19] A. K. Kumar, P. Venkataramaiah, Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM, International Journal of Applied Engineering Research. 13/5 (2018) 2158-2162.
[20] S. K. Thandra, S. K. Choudhury, Effect of cutting parameters on cutting force, surface finish and tool wear in hot machining, International Journal of Machining and Machinability of Materials. 7/3-4 (2010) 260-283. https://doi.org/10.1504/IJMMM.2010.03307
[21] A. K. Parida, K. Maity, Hot machining of Ti – 6Al – 4V : FE analysis and experimental validation, Sādhanā. 44 (2019) 1-6. https://doi.org/10.1007/s12046-019-1127-8
[22] W. Xu, X. Liu, J. Sun, L. Zhang, Finite element simulation and experimental research on electric hot machining, International Journal of Advanced Manufacturing Technology. 66 (2013) 407-415. https://doi.org/10.1007/s00170-012-4335-5
[23] A. K. Parida, K. Maity, Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis, Engineering Science and Technology, an International Journal. 20/2 (2017) 687-693. https://doi.org/10.1016/j.jestch.2016.10.006
[24] N. N. Zorev, Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting, International research in production engineering. 49 (1963) 142-152.
[25] S. Kato, K. Yamaguchi, M. Yamada, Stress distribution at the interface between tool and chip in machining, Journal of Manufacturing Science and Engineering, Transactions of the ASME. 94/2 (1972) 693-689. https://doi.org/10.1115/1.3428229
[26] K. Maekawa, T. Kitagawa, T. H. C. Childs, Friction characteristics at tool-chip interface in steel machining, Tribology Series. 32 (1997) 559–567. https://doi.org/10.1016/S0167-8922(08)70482-6
[27] G. Ortiz de Zarate, A. Madariaga, P. J. Arrazola, T. H. C. Childs, A novel methodology to characterize tool-chip contact in metal cutting using partially restricted contact length tools, CIRP Annals. 70/1 (2021) 61-64. https://doi.org/10.1016/j.cirp.2021.03.002
[28] M. Saez-de-Buruaga, P. Aristimuño, D. Soler, E. D’Eramo, A. Roth, P. J. Arrazola, Microstructure based flow stress model to predict machinability in ferrite–pearlite steels, CIRP Annals. 68/1 (2019) 49-52. https://doi.org/10.1016/j.cirp.2019.03.013