Using the particle finite element method for predicting optimum shear cutting clearance

Using the particle finite element method for predicting optimum shear cutting clearance

SANDIN Olle, LAROUR Patrick, RODRÍGUEZ Juan Manuel, KAJBERG Jörgen, CASELLAS Daniel

download PDF

Abstract. The shear cutting process, which is the most common cutting technique in the sheet forming industry, is known for introducing damage to the cut edges of high strength metal. This damage may impair the forming- or fatigue properties of the material and can cause edge-cracking during forming or in-service part failure. The edge formability of a sheared edge is strongly linked with the appearance of large notches arising due to unfavorable process parameters. By numerical modelling of the shear cutting process with the possibility to vary important process parameters, the sheared edge damage can be detected and avoided in the manufacturing process. This work present numerical modelling of shear cutting in Advanced High Strength Steel using a novel Particle Finite Element Method approach. Numerical modelling of shear cutting processes over a large range of cutting clearances were conducted and validated against laboratory experiment results. The results showed that the PFEM modelling could detect the cut edge damages with the largest negative impact on formability, thus narrowing the feasible cutting clearance range.

Keywords
Shear Cutting, AHSS, PFEM

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SANDIN Olle, LAROUR Patrick, RODRÍGUEZ Juan Manuel, KAJBERG Jörgen, CASELLAS Daniel, Using the particle finite element method for predicting optimum shear cutting clearance, Materials Research Proceedings, Vol. 41, pp 1887-1896, 2024

DOI: https://doi.org/10.21741/9781644903131-209

The article was published as article 209 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Konieczny, T. Henderson, On formability limitations in stamping involving sheared edge stretching, SAE Technical Papers (2007). https://doi.org/10.4271/2007-01-0340
[2] H.C. Shih, C. Chiriac, M.F. Shi, The effects of AHSS shear edge conditions on edge fracture, ASME 2010 International Manufacturing Science and Engineering Conference, MSEC 2010 1 (2010) 599–608. https://doi.org/10.1115/MSEC2010-34062
[3] J. Dykeman, S. Malcolm, B. Yan, J. Chintamani, G. Huang, N. Ramisetti, H. Zhu, Characterization of edge fracture in various types of advanced high strength steel, SAE Technical Papers (2011). https://doi.org/10.4271/2011-01-1058
[4] D.J. Thomas, Understanding the effects of mechanical and laser cut-edges to prevent formability ruptures during automotive manufacturing, Journal of Failure Analysis and Prevention 13 (2013) 451–462. https://doi.org/10.1007/s11668-013-9696-z
[5] D. Frómeta, M. Tedesco, J. Calvo, A. Lara, S. Molas, D. Casellas, Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology, J Phys Conf Ser 896 (2017). https://doi.org/10.1088/1742-6596/896/1/012102
[6] A. Lara, I. Picas, D. Casellas, Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels, J Mater Process Technol 213 (2013) 1908–1919. https://doi.org/10.1016/j.jmatprotec.2013.05.003
[7] I. Paetzold, F. Dittmann, M. Feistle, R. Golle, P. Haefele, H. Hoffmann, W. Volk, Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel, J Phys Conf Ser 896 (2017). https://doi.org/10.1088/1742-6596/896/1/012107
[8] J. Stahl, I. Pätzold, R. Golle, C. Sunderkötter, H. Sieurin, W. Volk, Effect of one- And two-stage shear cutting on the fatigue strength of truck frame parts, Journal of Manufacturing and Materials Processing 4 (2020). https://doi.org/10.3390/JMMP4020052
[9] T. Shiozaki, Y. Tamai, T. Urabe, Effect of residual stresses on fatigue strength of high strength steel sheets with punched holes, Int J Fatigue 80 (2015) 324–331. https://doi.org/10.1016/J.IJFATIGUE.2015.06.018
[10] S. Parareda, D. Fr, D. Casellas, H. Sieurin, A. Mateo, Understanding the Fatigue Notch Sensitivity of High-Strength Steels through Fracture Toughness, Metals (Basel) 13 (2023) 1117. https://doi.org/https://doi.org/ 10.3390/met13061117
[11] D. Gustafsson, S. Parareda, L. Ortiz-Membrado, A. Mateo, E. Jiménez-Piqué, E. Olsson, Simulation of metal punching and trimming using minimal experimental characterization, J Mater Process Technol 321 (2023) 118148. https://doi.org/10.1016/j.jmatprotec.2023.118148
[12] P. Larour, J. Hinterdorfer, L. Wagner, J. Freudenthaler, A. Grünsteidl, M. Kerschbaum, Stretch flangeability of AHSS automotive grades versus cutting tool clearance, wear, angle and radial strain gradients, IOP Conf Ser Mater Sci Eng 1238 (2022) 012041. https://doi.org/10.1088/1757-899X/1238/1/012041
[13] O. Sandin, J.M.R. Prieto, S. Hammarberg, D. Casellas, Numerical modelling of shear cutting using particle methods, IOP Conf Ser Mater Sci Eng 1284 (2023) 012048. https://doi.org/10.1088/1757-899x/1284/1/012048
[14] X. Ye, J. Manuel, R. Prieto, R. Müller, An Improved Particle Finite Element Method for the Simulation of Machining Processes, 89 (2020) 13:1-13:0. https://doi.org/10.4230/OASIcs.iPMVM.2020.13
[15] J.M. Rodríguez, J.M. Carbonell, J.C. Cante, J. Oliver, Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM), Int J Solids Struct 120 (2017) 81–102. https://doi.org/10.1016/j.ijsolstr.2017.04.030
[16] E. Oñate, A. Franci, J.M. Carbonell, A particle finite element method for analysis of industrial forming processes, Comput Mech 54 (2014) 85–107. https://doi.org/10.1007/S00466-014-1016-2
[17] S.R. Idelsohn, E. Onate, F. Del Pin, The particle finite element method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int J Numer Methods Eng 61 (2004) 964–989. https://doi.org/10.1002/nme.1096
[18] J.M. Rodriguez, J.M. Carbonell, J.C. Cante, J. Oliver, The particle finite element method (PFEM) in thermo-mechanical problems, Int J Numer Methods Eng 107 (2016) 733–785. https://doi.org/10.1002/NME.5186
[19] Juan Manuel Rodriguez Prieto, Numerical modeling of metal cutting processes using the Particle Finite Element Method, (2013) 185.
[20] J.M. Rodriguez, S. Larsson, J.M. Carbonell, P. Jonsén, Implicit or explicit time integration schemes in the PFEM modeling of metal cutting processes, Comput Part Mech 9 (2022) 709–733. https://doi.org/10.1007/s40571-021-00439-5
[21] J.M. Rodriguez Prieto, J.M. Carbonell, J.C. Cante, J. Oliver, P. Jonsén, Generation of segmental chips in metal cutting modeled with the PFEM, Comput Mech 61 (2018) 639–655. https://doi.org/10.1007/s00466-017-1442-z
[22] E. Oñate, S.R. Idelsohn, F. Del Pin, R. Aubry, the Particle Finite Element Method — an Overview, Int J Comput Methods 01 (2004) 267–307. https://doi.org/10.1142/s0219876204000204
[23] J.R. Shewchuk, Condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations, in: Proceedings of the Annual Symposium on Computational Geometry, Minneapolis, MN, 1998: pp. 76–85. https://doi.org/10.1145/276884.276893
[24] K. Stiebler, H.D. Kunze, E. El-Magd, Description of the flow behaviour of a high strength austenitic steel under biaxial loading by a constitutive equation, Nuclear Engineering and Design 127 (1991) 85–93. https://doi.org/10.1016/0029-5493(91)90041-F
[25] ISO 16808:2014, Metallic materials — Sheet and strip — Determination of biaxial stress-strain curve by means of bulge test with optical measuring systems, (2014).
[26] F. Neukamm, M. Feucht, A. Haufe, K. Roll, On Closing the Constitutive Gap Between Forming and Crash Simulation, in: 10th International LS-DYNA Users Conference, 2008: pp. 12–21.
[27] T. Sjöberg, S. Marth, J. Kajberg, H.-A. Häggblad, Experimental characterisation of the evolution of triaxiality stress state for sheet metal materials, European Journal of Mechanics, A/Solids 66 (2017) 279–286. https://doi.org/10.1016/j.euromechsol.2017.07.013
[28] Y. Bai, X. Teng, T. Wierzbicki, On the application of stress triaxiality formula for plane strain fracture testing, Journal of Engineering Materials and Technology, Transactions of the ASME 131 (2009) 0210021–02100210. https://doi.org/10.1115/1.3078390
[29] Y. Bai, T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture, Int J Fract 161 (2010) 1–20. https://doi.org/10.1007/s10704-009-9422-8
[30] F. Andrade, M. Feucht, A. Haufe, F. Neukamm, An incremental stress state dependent damage model for ductile failure prediction, Int J Fract 200 (2016) 127–150. https://doi.org/10.1007/s10704-016-0081-2
[31] ISO 16630:2017, Metallic materials — Sheet and strip — Hole expanding test, International Standard Second Edi (2017).