–
Intelligent control of ISBM process for recycled PET bottles
HAN William, KERFRIDEN Pierre, VIORA Laurianne, COMBEAUD Christelle, BOUVARD Jean-Luc, CANTOURNET Sabine
download PDFAbstract. To manufacture plastic bottles with an increased ratio of rPET (recycled Polyethylene terephthalate), the ISBM (Injection Stretch Blow Moulding) process must be controlled to account for the variable mechanical and thermal properties. Calibration and optimization of the process have been successfully realized in past works but cannot be used for real-time applications. To address this, a gaussian process regression model of the free blowing step is created. It can calibrate itself using the pressure curve from a previous blowing to obtain near instantaneous predictions of key properties of the bottle. To create the model, the process’ characteristics are studied. Finite element simulations of the blowing where the properties follow a multivariate gaussian distribution are used to train the artificial intelligence. Then, an example is shown using the artificial intelligence predictions to optimize the thickness distribution of a bottle after blowing.
Keywords
PET, Free Injection Stretch Blow Process, Machine Learning, Gaussian Process Regression
Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: HAN William, KERFRIDEN Pierre, VIORA Laurianne, COMBEAUD Christelle, BOUVARD Jean-Luc, CANTOURNET Sabine, Intelligent control of ISBM process for recycled PET bottles, Materials Research Proceedings, Vol. 41, pp 1817-1826, 2024
DOI: https://doi.org/10.21741/9781644903131-201
The article was published as article 201 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. Nixon, G.H. Menary, S. Yan, Finite element simulations of stretch-blow moulding with experimental validation over a broad process window, Int. J. Mater. Form. 10 (2017) 793–809. https://doi.org/10.1007/s12289-016-1320-9
[2] Y. Luo, L. Chevalier, E. Monteiro, S. Yan, G. Menary, Simulation of the Injection Stretch Blow Molding Process: An Anisotropic Visco‐Hyperelastic Model for Polyethylene Terephthalate Behavior, Polym. Eng. Sci. 60 (2020) 823–831. https://doi.org/10.1002/pen.25341
[3] Y. Luo, G. Tantchou Yakam, R. Charlot, L. Chevalier, R. Savajano, In situ adjustment of a visco hyper elastic model for stretch blow molding process simulation of poly‐ethylene terephthalate bottles, Polym. Eng. Sci. 63 (2023) 3066–3082. https://doi.org/10.1002/pen.26428
[4] A.-D. Le, R. Gilblas, V. Lucin, Y.L. Maoult, F. Schmidt, Infrared heating modeling of recycled PET preforms in injection stretch blow molding process, Int. J. Therm. Sci. 181 (2022) 107762. https://doi.org/10.1016/j.ijthermalsci.2022.107762
[5] L. Viora, M. Combeau, M.F. Pucci, D. Perrin, P.-J. Liotier, J.-L. Bouvard, C. Combeaud, A Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Properties, Polymers 15 (2023) 4613. https://doi.org/10.3390/polym15234613
[6] O. Brandau, Stretch blow molding, Third edition, William Andrew, an imprint of Elsevier, Amsterdam Boston Heidelberg, 2017.
[7] P.-B. Rubio, L. Chamoin, F. Louf, Real-time data assimilation and control on mechanical systems under uncertainties, Adv. Model. Simul. Eng. Sci. 8 (2021) 4. https://doi.org/10.1186/s40323-021-00188-3
[8] P. Pereira Álvarez, P. Kerfriden, D. Ryckelynck, V. Robin, Real-Time Data Assimilation in Welding Operations Using Thermal Imaging and Accelerated High-Fidelity Digital Twinning, Mathematics 9 (2021) 2263. https://doi.org/10.3390/math9182263
[9] M. Bordival, F.M. Schmidt, Y.L. Maoult, V. Velay, Optimization of preform temperature distribution for the stretch-blow molding of PET bottles: Infrared heating and blowing modeling, Polym. Eng. Sci. 49 (2009) 783–793. https://doi.org/10.1002/pen.21296
[10] J. Biglione, Y. Béreaux, J.-Y. Charmeau, J. Balcaen, S. Chhay, Numerical simulation and optimization of the injection blow molding of polypropylene bottles – a single stage process, Int. J. Mater. Form. 9 (2016) 471–487. https://doi.org/10.1007/s12289-015-1234-y
[11] Y. Salomeia, G.H. Menary, C.G. Armstrong, J. Nixon, S. Yan, Measuring and modelling air mass flow rate in the injection stretch blow moulding process, Int. J. Mater. Form. 9 (2015) 531–545. https://doi.org/10.1007/s12289-015-1240-0
[12] E. Gorlier, J.F. Agassant, J.M. Haudin, N. Billon, Experimental and theoretical study of uniaxial deformation of amorphous poly(ethylene terephthalate) above glass transition temperature, Plast. Rubber Compos. 30 (2001) 48–55. https://doi.org/10.1179/146580101101541435
[13] G.H. Menary, C.W. Tan, C.G. Armstrong, Y. Salomeia, M. Picard, N. Billon, E.M.A. Harkin-Jones, Validating injection stretch-blow molding simulation through free blow trials, Polym. Eng. Sci. 50 (2010) 1047–1057. https://doi.org/10.1002/pen.21555
[14] C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning, MIT Press, Cambridge, Mass, 2006.
[15] L. Chevalier, Y.M. Luo, E. Monteiro, G.H. Menary, On visco-elastic modelling of polyethylene terephthalate behaviour during multiaxial elongations slightly over the glass transition temperature, Mech. Mater. 52 (2012) 103–116. https://doi.org/10.1016/j.mechmat.2012.05.003
[16] I.M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comput. Math. Math. Phys. 7 (1967) 86–112. https://doi.org/10.1016/0041-5553(67)90144-9
[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res. 12 (n.d.) 2825–2830.
[18] R. Storn, K. Price, Differential Evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces, J. Glob. Optim. 11 (1997) 341–359. https://doi.org/10.1023/A:1008202821328