–
Identifiability analysis of material identification using nonlinear VFM
STARMAN Bojan, ZHANG Yi, LAVA Pascal, HALILOVIČ Miroslav, COPPIETERS Sam
download PDFAbstract. The success of inverse material model identification depends on the interaction between the adopted material model, the design of the heterogeneous specimens, the quality of the full-field measurements and the employed inverse identification method. Although inverse identification with full fields usually uses either FEMU or nonlinear VFM algorithms, a range of specimen designs and heterogeneity indicators have been proposed to assess the quality of the measured field and specimen design. While many studies investigate the effects of strain field heterogeneity on material model identification, few of them address the comprehensive interaction of all the above features and investigate their interactions during inverse identification through identifiability analysis. In this study, we analyze the identifiability of the parameters of the YLD2000-2d model used to describe the plastic anisotropy of steel sheet DC04 using a perforated biaxial specimen with the nonlinear VFM method. For this purpose, we performed a virtual DIC experiment with known material parameters by simulating the test in ABAQUS/Standard, generating synthetic images and reconstructing the strains via stereo DIC. Before inverse identification with a nonlinear sensitivity-based VFM, we analyzed the sensitivity of the virtual work to parameter changes and performed an identifiability analysis.
Keywords
Inverse Identification, Digital Image Correlation, Virtual Field Method, Anisotropy
Published online 4/24/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: STARMAN Bojan, ZHANG Yi, LAVA Pascal, HALILOVIČ Miroslav, COPPIETERS Sam, Identifiability analysis of material identification using nonlinear VFM, Materials Research Proceedings, Vol. 41, pp 1761-1768, 2024
DOI: https://doi.org/10.21741/9781644903131-195
The article was published as article 195 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] F. Pierron, “Material Testing 2.0: A brief review,” Strain, vol. 59, no. 3, p. e12434, 2023. https://doi.org/10.1111/str.12434
[2] H. Schreier, J.-J. Orteu, and M. A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications. Boston, MA: Springer US, 2009. https://doi.org/10.1007/978-0-387-78747-3
[3] F. Pierron and M. Grédiac, “Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements,” Strain, vol. n/a, no. n/a, p. e12370, 2020. https://doi.org/10.1111/str.12370
[4] M. Grédiac, F. Pierron, S. Avril, E. Toussaint, and M. Rossi, “Virtual Fields Method,” in Full-Field Measurements and Identification in Solid Mechanics, John Wiley & Sons, Ltd, 2012, pp. 301–330. doi: 10.1002/9781118578469.ch11
[5] F. Pierron, S. Zhavoronok, and M. Grédiac, “Identification of the through-thickness properties of thick laminated tubes using the virtual fields method,” Int. J. Solids Struct., vol. 37, no. 32, pp. 4437–4453, Aug. 2000. https://doi.org/10.1016/S0020-7683(99)00149-3
[6] D. Claire, F. Hild, and S. Roux, “A finite element formulation to identify damage fields: the equilibrium gap method,” Int. J. Numer. Methods Eng., vol. 61, no. 2, pp. 189–208, 2004. https://doi.org/10.1002/nme.1057
[7] E. Pagnacco, A. Moreau, and D. Lemosse, “Inverse strategies for the identification of elastic and viscoelastic material parameters using full-field measurements,” Mater. Sci. Eng. A, vol. 452–453, pp. 737–745, Apr. 2007. https://doi.org/10.1016/j.msea.2006.10.122
[8] H. D. Bui, A. Constantinescu, and H. Maigre, “Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap,” Inverse Probl., vol. 20, no. 4, p. 993, May 2004. https://doi.org/10.1088/0266-5611/20/4/001
[9] F. Mathieu, H. Leclerc, F. Hild, and S. Roux, “Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC,” Exp. Mech., vol. 55, no. 1, pp. 105–119, Jan. 2015. https://doi.org/10.1007/s11340-014-9888-9
[10] J. Kajberg and G. Lindkvist, “Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields,” Int. J. Solids Struct., vol. 41, no. 13, pp. 3439–3459, Jun. 2004. https://doi.org/10.1016/j.ijsolstr.2004.02.021
[11] J. Réthoré, Muhibullah, T. Elguedj, M. Coret, P. Chaudet, and A. Combescure, “Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics,” Int. J. Solids Struct., vol. 50, no. 1, pp. 73–85, Jan. 2013. https://doi.org/10.1016/j.ijsolstr.2012.09.002
[12] A. P. Ruybalid, J. P. M. Hoefnagels, O. van der Sluis, and M. G. D. Geers, “Comparison of the identification performance of conventional FEM updating and integrated DIC,” Int. J. Numer. Methods Eng., vol. 106, no. 4, pp. 298–320, 2016. https://doi.org/10.1002/nme.5127
[13] S. Coppieters and T. Kuwabara, “Identification of Post-Necking Hardening Phenomena in Ductile Sheet Metal,” Exp. Mech., vol. 54, no. 8, pp. 1355–1371, Oct. 2014.https://doi.org/10.1007/s11340-014-9900-4
[14] S. Coppieters, S. Cooreman, H. Sol, P. Van Houtte, and D. Debruyne, “Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone,” J. Mater. Process. Technol., vol. 211, no. 3, pp. 545–552, Mar. 2011. https://doi.org/10.1016/j.jmatprotec.2010.11.015
[15] D. Lecompte, S. Cooreman, S. Coppieters, J. Vantomme, H. Sol, and D. Debruyne, “Parameter identification for anisotropic plasticity model using digital image correlation,” Eur. J. Comput. Mech., vol. 18, no. 3–4, pp. 393–418, Jan. 2009. https://doi.org/10.3166/ejcm.18.393-418
[16] A. Maček, B. Starman, N. Mole, and M. Halilovič, “Calibration of Advanced Yield Criteria Using Uniaxial and Heterogeneous Tensile Test Data,” Metals, vol. 10, no. 4, p. 542, Apr. 2020. https://doi.org/10.3390/met10040542
[17] S. Avril and F. Pierron, “General framework for the identification of constitutive parameters from full-field measurements in linear elasticity,” Int. J. Solids Struct., vol. 44, no. 14, pp. 4978–5002, Jul. 2007. https://doi.org/10.1016/j.ijsolstr.2006.12.018
[18] M. Grédiac and F. Pierron, “Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters,” Int. J. Plast., vol. 22, no. 4, pp. 602–627, Apr. 2006. https://doi.org/10.1016/j.ijplas.2005.04.007
[19] Y. Pannier, S. Avril, R. Rotinat, and F. Pierron, “Identification of Elasto-Plastic Constitutive Parameters from Statically Undetermined Tests Using the Virtual Fields Method,” Exp. Mech., vol. 46, no. 6, pp. 735–755, Dec. 2006. https://doi.org/10.1007/s11340-006-9822-x
[20] J.-H. Kim, F. Barlat, F. Pierron, and M.-G. Lee, “Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method,” Exp. Mech., vol. 54, no. 7, pp. 1189–1204, Sep. 2014. https://doi.org/10.1007/s11340-014-9879-x
[21] M. Rossi, F. Pierron, and M. Štamborská, “Application of the virtual fields method to large strain anisotropic plasticity,” Int. J. Solids Struct., vol. 97–98, pp. 322–335, Oct. 2016. https://doi.org/10.1016/j.ijsolstr.2016.07.015
[22] M. Rossi and F. Pierron, “Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields,” Comput. Mech., vol. 49, no. 1, pp. 53–71, Jan. 2012. https://doi.org/10.1007/s00466-011-0627-0
[23] R. Brun, P. Reichert, and H. R. Künsch, “Practical identifiability analysis of large environmental simulation models,” Water Resour. Res., vol. 37, no. 4, pp. 1015–1030, 2001. https://doi.org/10.1029/2000WR900350
[24] S. Coppieters, T. Hakoyama, D. Debruyne, S. Takahashi, and T. Kuwabara, “Inverse Yield Locus Identification of Sheet Metal Using a Complex Cruciform in Biaxial Tension and Digital Image Correlation,” Proceedings, vol. 2, no. 8, Art. no. 8, 2018. https://doi.org/10.3390/ICEM18-05208
[25] A. Marek, F. M. Davis, and F. Pierron, “Sensitivity-based virtual fields for the non-linear virtual fields method,” Comput. Mech., vol. 60, no. 3, pp. 409–431, Sep. 2017. https://doi.org/10.1007/s00466-017-1411-6
[26] S. Cooreman, “Identification of the plastic material behaviour through full-field displacement measurements and inverse methods,” VUB, 2008.
[27] S. Coppieters et al., “On the synergy between physical and virtual sheet metal testing: calibration of anisotropic yield functions using a microstructure-based plasticity model,” Int. J. Mater. Form., vol. 12, no. 5, pp. 741–759, Sep. 2019. https://doi.org/10.1007/s12289-018-1444-1
[28] P. Lava, S. Cooreman, S. Coppieters, M. De Strycker, and D. Debruyne, “Assessment of measuring errors in DIC using deformation fields generated by plastic FEA,” Opt. Lasers Eng., vol. 47, no. 7, pp. 747–753, Jul. 2009. https://doi.org/10.1016/j.optlaseng.2009.03.007
[29] Y. Zhang, A. Yamanaka, S. Cooreman, T. Kuwabara, and S. Coppieters, “Inverse identification of plastic anisotropy through multiple non-conventional mechanical experiments,” Int. J. Solids Struct., vol. 285, p. 112534, Dec. 2023. https://doi.org/10.1016/j.ijsolstr.2023.112534
[30] Y. Zhang, A. Van Bael, A. Andrade-Campos, and S. Coppieters, “Parameter identifiability analysis: Mitigating the non-uniqueness issue in the inverse identification of an anisotropic yield function,” Int. J. Solids Struct., vol. 243, p. 111543, May 2022. https://doi.org/10.1016/j.ijsolstr.2022.111543
[31] A. Maček, B. Starman, S. Coppieters, J. Urevc, and M. Halilovič, “Confidence intervals of inversely identified material model parameters: A novel two-stage error propagation model based on stereo DIC system uncertainty,” Opt. Lasers Eng., vol. 174, p. 107958, Mar. 2024. https://doi.org/10.1016/j.optlaseng.2023.107958