Parametric failure limit detection for the sheet metal forming of a floating photovoltaic (FPV) aluminum alloy structure

Parametric failure limit detection for the sheet metal forming of a floating photovoltaic (FPV) aluminum alloy structure

TVEIT Sigbjørn, REYES Aase, ERDURAN Emrah

download PDF

Abstract. The sheet metal forming process of a floating photovoltaic (FPV) structure is simulated in LS-DYNA. An anisotropic yield criterion and a two-term Voce hardening law are used to model the plastic behavior of AA5083-H111 sheets. The numerical model incorporates thickness variations to trigger local necking and uses a critical thickness strain as a fracture criterion. To establish a methodology that can be expanded for further studies, the research explores the relationship between cup depth and drawbead distance by proposing an algorithm to distinguish between successful and unsuccessful sheet metal forming operations.

Keywords
Sheet Metal Forming, Aluminum Alloys, Parametric Analysis

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: TVEIT Sigbjørn, REYES Aase, ERDURAN Emrah, Parametric failure limit detection for the sheet metal forming of a floating photovoltaic (FPV) aluminum alloy structure, Materials Research Proceedings, Vol. 41, pp 1048-1057, 2024

DOI: https://doi.org/10.21741/9781644903131-115

The article was published as article 115 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] LIVERMORE SOFTWARE TECHNOLOGY (LSTC), LS-DYNA® Theory Manual 2019.
[2] A. Dal Pozzolo, O. Caelen, R.A. Johnson, G. Bontempi, Calibrating probability with undersampling for unbalanced classification, in: 2015 IEEE symposium series on computational intelligence, IEEE, 2015, pp. 159-166. https://doi.org/10.1109/SSCI.2015.33
[3] D. Banabic, D.-S. Comsa, P. Eyckens, A. Kami, M. Gologanu, Advanced models for the prediction of forming limit curves, in: Multiscale Modelling in Sheet Metal Forming, 2016, pp. 205-300. https://doi.org/10.1007/978-3-319-44070-5_5
[4] Z. Marciniak, K. Kuczyński, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 9 (1967) 609-620. https://doi.org/10.1016/0020-7403(67)90066-5
[5] D. Banabic, A review on recent developments of Marciniak-Kuczynski model, Comput. Methods in Mater. Sci., 10 (2010) 225-237
[6] O. Lademo, T. Berstad, O. Hopperstad, K. Pedersen, A numerical tool for formability analysis of aluminium alloys. Part I: Theory, Steel Grips, 2 (2004) 427-431
[7] O. Lademo, T. Berstad, O. Hopperstad, K. Pedersen, A numerical tool for formability analysis of aluminium alloys. Part II: Experimental validation, Steel Grips, 2 (2004) 433-437.
[8] Ø. Fyllingen, O. Hopperstad, O.-G. Lademo, M. Langseth, Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation, Comput. Struct., 87 (2009) 128-139. https://doi.org/10.1016/j.compstruc.2008.07.002
[9] J.D. Bressan, J.A. Williams, The use of a shear instability criterion to predict local necking in sheet metal deformation, Int. J. Mech. Sci., 25 (1983) 155-168. https://doi.org/10.1016/0020-7403(83)90089-9
[10] O. Hopperstad, T. Berstad, O. Lademo, M. Langseth, Shear instability criterion for plastic anisotropy, SINTEF, Trondheim, 2006.
[11] A. Reyes, O.S. Hopperstad, T. Berstad, O.-G. Lademo, Prediction of necking for two aluminum alloys under non-proportional loading by using an FE-based approach, Int. J. Mater. Form., 1 (2008) 211-232. https://doi.org/10.1007/s12289-008-0384-6
[12] H. Aretz, A non-quadratic plane stress yield function for orthotropic sheet metals, J. Mater. Process. Technol., 168 (2005) 1-9. https://doi.org/10.1016/j.jmatprotec.2004.10.008
[13] E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Met., 74 (1948) 537-562
[14] Z. Marciniak, K. Kuczyński, T. Pokora, Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension, Int. J. Mech. Sci., 15 (1973) 789-800. https://doi.org/10.1016/0020-7403(73)90068-4
[15] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourgoghrat, S.H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets – part 1: theory, Int. J. Plast., 19 (2003) 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
[16] K.K. Phoon, S.P. Huang, S.T. Quek, Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme, Probabilistic Eng. Mech., 17 (2002) 293-303. https://doi.org/10.1016/S0266-8920(02)00013-9
[17] S. Tveit, A. Reyes, A submodeling technique for incorporating sheet metal forming effects in an AA5083 FPV structure, submitted for publication, (2024).