Fire Induced Microstructural Changes in Local Building Materials: Cases of White Marble and Limestone
Laila AKRAM, Imane FIKRI, Abdelkhalek KAMMOUNI, Salam KHRISSI, Mustapha HADDAD, Saadia AIT LYAZIDI
download PDFAbstract. The aim of this work is to evaluate the degradation state of natural stones after their exposure to fire. These building and decorative materials, widely used in the architectural heritage, suffer irreversible damage when exposed to high temperatures. Therefore, knowledge of their residual durability is crucial in order to determine whether the post-fire building structure should be restored, reinforced or demolished. For this purpose, limestones (calcarenites) and white marbles collected from local quarries were subjected to heating-cooling cycles in a muffle furnace at various temperatures up to 1100°C. After each exposure, the selected samples were characterized at room temperature using X-ray diffraction (XRD), micro-Raman and ATR-FTIR infrared techniques. The results obtained showed that the mineralogical nature of both calcareous and marble natural stones is a key factor in their thermal stability when exposed to high temperatures. Above 570°C, natural stones undergo calcite decarbonation at different temperature ranges. Marble, which is mineralogically monophasic, underwent decomposition at 800°C, similar to calcite in its pure state. Calcarenite was decomposed at a much lower temperature of about 700 °C. This study classifies marble as more thermally stable than calcarenite.
Keywords
Ancient Buildings, Limestone and Marble, Fire Exposure, Characterization Techniques, Thermal Stability
Published online 3/15/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Laila AKRAM, Imane FIKRI, Abdelkhalek KAMMOUNI, Salam KHRISSI, Mustapha HADDAD, Saadia AIT LYAZIDI, Fire Induced Microstructural Changes in Local Building Materials: Cases of White Marble and Limestone, Materials Research Proceedings, Vol. 40, pp 303-310, 2024
DOI: https://doi.org/10.21741/9781644903117-32
The article was published as article 32 of the book Mediterranean Architectural Heritage
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Y. Zhang, X. Ta, S. Qin, Effect of heat treatment on physico-mechanical behaviour of a natural building stone: Laizhou dolomite marble, J. Build. Eng. 47 (2022) 103885. https://doi.org/10.1016/j.jobe.2021.103885
[2] M. Vigroux, J. Eslami, A.L. Beaucour, A. Bourgès, A. Noumowé, High temperature behaviour of various natural building stones, Constr. Build. Mater. 272 (2021) 121629. https://doi.org/10.1016/j.conbuildmat.2020.121629
[3] Q. Guo, H. Su, J. Liu, Q. Yin, H. Jing, L. Yu, An experimental study on the fracture behaviors of marble specimens subjected to high temperature treatment, Eng. Fract. Mech. 225 (2020) 106862. https://doi.org/10.1016/j.engfracmech.2019.106862
[4] W. Zhang, Q. Sun, S. Zhu, B. Wang, Experimental study on mechanical and porous characteristics of limestone affected by high temperature, Appl. Therm. Eng, 110 (2017) 356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194
[5] A. Ozguven, Y. Ozcelik, Effects of high temperature on physico-mechanical properties of Turkish natural building stones, Eng. Geol. 183 (2014) 127-136. https://doi.org/10.1016/j.enggeo.2014.10.006
[6] K. Beck, S. Janvier-Badosa, X. Brunetaud, Á. Török, M. Al-Mukhtar, Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures, Eur. J. Environ. Civ. 20 (2016) 643-655. https://doi.org/10.1080/19648189.2015.1035804
[7] A. Ozguven, Y. Ozcelik, Investigation of some property changes of natural building stones exposed to fire and high heat, Constr. Build. Mater. 38 (2013) 813-821. https://doi.org/10.1016/j.conbuildmat.2012.09.072
[8] S. Khrissi, M. Haddad, L. Bejjit, S. Ait Lyazidi, M. El Amraoui, C. Falguères, Étude spectrométrique de marbres du Maroc central, L’Anthropologie, 121 (2017) 55-62. https://doi.org/10.1016/j.anthro.2017.03.004
[9] T. Lamhasni, H. El-Marjaoui, A. El Bakkali, S. Ait Lyazidi, M. Haddad, A. Ben-Ncer, F. Benyaich, A. Bonazza, M. Tahri, Air pollution impact on architectural heritage of Morocco: Combination of synchronous fluorescence and ATR-FTIR spectroscopies for the analyses of black crusts deposits, Chemosphere, 225 (2019) 517-523. https://doi.org/10.1016/j.chemosphere.2019.03.109
[10] A. Di Salvo Barsi, M.A. Trezza, E.F. Irassar, Comparison of dolostone and limestone as filler in blended cements, Bull. Eng. Geol. Environ. 79 (2020) 243-253. https://doi.org/10.1007/s10064-019-01549-4
[11] S. Petlitckaia, A. Gharzouni, E. Hyvernaud, N. Texier-Mandoki, X. Bourbon, S. Rossignol, Influence of the nature and amount of carbonate additions on the thermal behaviour of geopolymers: A model for prediction of shrinkage, Constr. Build. Mater. 296 (2021) 123752. https://doi.org/10.1016/j.conbuildmat.2021.123752
[12] E. Gasparini, S.C. Tarantino, P. Ghigna, M.P. Riccardi, E.I. Cedillo-González, C. Siligardi, M. Zema, Thermal dehydroxylation of kaolinite under isothermal conditions, Appl. Clay. Sci. 80 (2013) 417-425. https://doi.org/10.1016/j.clay.2013.07.017
[13] R. Deju, C. Mazilu, I. Stanculescu, C. Tuca, Fourier transform infrared spectroscopic characterization of thermal treated kaolin, Rom. Rep. Phys. 72 (2020) 806.
[14] Z. Xing, R. Hébert, A.L. Beaucour, B. Ledésert, A. Noumowé, Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature, Mater. Struct. 47 (2014) 1921-1940. https://doi.org/10.1617/s11527-013-0161-y
[15] Y. Tang, J. Xu, J. Zhang, Y. Lu, Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts, J. Clean. Prod. 42 (2013) 198-203. https://doi.org/10.1016/j.jclepro.2012.11.001
[16] S. Gunasekaran, G. Anbalagan, Spectroscopic study of phase transitions in natural calcite mineral, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 69 (2008) 1246-1251. https://doi.org/10.1016/j.saa.2007.06.036
[17] N.V. Chukanov, A.D. Chervonnyi, Infrared Spectroscopy of Minerals and Related Compounds, Springer Mineralogy. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-25349-7
[18] I. Perná, M. Šupová, T. Hanzlíček, Gehlenite and anorthite formation from fluid fly ash, J. Mol. Struct. 1157 (2018) 476-481. https://doi.org/10.1016/j.molstruc.2017.12.084
[19] P. Ptáček, T. Opravil, F. Šoukal, J. Havlica, R. Holešinský, Kinetics and mechanism of formation of gehlenite, Al–Si spinel and anorthite from the mixture of kaolinite and calcite, Solid. State. Sci. 26 (2013) 53-58. https://doi.org/10.1016/j.solidstatesciences.2013.09.014
[20] I. Fikri, M. El Amraoui, M. Haddad, A.S Ettahiri, C. Falguères, L. Bellot-Gurlet, T. Lamhasni, S. Ait Lyazidi, L. Bejjit, Raman and ATR-FTIR analyses of medieval wall paintings from al-Qarawiyyin in Fez (Morocco), Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 280 (2022) 121557. https://doi.org/10.1016/j.saa.2022.121557
[21] Š. Pešková, V. Machovič, P. Procházka, Raman spectroscopy structural study of fired concrete, Ceram. – Silik. 55 (2011) 410-417.
[22] N. Böhme, K. Hauke, M. Neuroth, T. Geisler, In situ Raman imaging of high-temperature solid-state reactions in the CaSO4–SiO2 system, Int. J. Coal. Sci. Technol. 6 (2019) 247-259. https://doi.org/10.1007/s40789-019-0252-7
[23] M. Chollet, M. Horgnies, Analyses of the surfaces of concrete by Raman and FT-IR spectroscopies: Comparative study of hardened samples after demoulding and after organic post-treatment, Surf. Interface. Anal. 43 (2011) 714-725. https://doi.org/10.1002/sia.3548
[24] T. Schmida, P. Dariz, Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3, J. Raman. Spectrosc. 46 (2014) 141-146. https://doi.org/10.1002/jrs.4622
[25] F. Sciarretta, J. Eslami, A.L. Beaucour, A. Noumowé, State-of-the-art of construction stones for masonry exposed to high temperatures, Constr. Build. Mater. 304 (2021) 124536. https://doi.org/10.1016/j.conbuildmat.2021.124536
[26] M. Pinet, D.C. Smith, B. Lasnier, Utilité de la microsonde Raman pour l’identification non-destructive des gemmes, La Microsonde Raman en Geologie, ed. N. Hors-Serie, Revue de Gemmologie, Paris, p. 11, 1992.
[27] M. Tufail, K. Shahzada, B. Gencturkan, J. Wei, Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete, Int. J. Concr. Struct. Mater. 11 (2017) 17-28. https://doi.org/10.1007/s40069-016-0175-2
[28] A. Aboulayt, M. Riahi, M. Ouazzani Touhami, H. Hannache, M. Gomina, R. Moussa, Properties of metakaolin based geopolymer incorporating calcium carbonate, Adv. Powder. Technol. 28 (2017) 2393-2401. https://doi.org/10.1016/j.apt.2017.06.022
[29] W. Li, Q. Li, Y. Qian, F. Ling, R. Liu, Structural properties and failure characteristics of granite after thermal treatment and water cooling, Geomech. Geophys. Geo-energ. Geo-resour. 9 171 (2023) 1-18. https://doi.org/10.1007/s40948-023-00716-y
[30] M. El Ouahabi, L. Daoudi, F. Hatert, N. Fagel, Modified mineral phases during clay ceramic firing, Clays Clay Miner. 63 (2015) 404-413. https://doi.org/10.1346/CCMN.2015.0630506