Rare-Earth Doped Materials for Optical Information Storage

$30.00

Rare-Earth Doped Materials for Optical Information Storage

C.S. Kamal, D. Haranath

Nowadays, in this digital era, we are constantly bombarded with information. In recent years, researchers have paid a lot of attention to new information storage formats and storage methodologies. Optical information storage offers a number of benefits that make it a viable future alternative for information storage in comparison to magnetic media and semiconductor memory. Due to the inherent 4fn orbital and rich energy-level structures of rare-earth elements, research on rare-earth doped materials for optical information storage has propelled the development of state-of-the-art luminescent materials as information carriers in the 21st century by emitting polychromatic radiation covering the entire visible and near-infrared (NIR) spectral region when irradiated by NIR, visible, or ultraviolet (UV) light.

Keywords
Rare Earth Ions, Optical Storage, Optical Memory, Multiplexing, Optical Stimulated Luminescence

Published online 6/5/2024, 19 pages

Citation: C.S. Kamal, D. Haranath, Rare-Earth Doped Materials for Optical Information Storage, Materials Research Foundations, Vol. 164, pp 211-229, 2024

DOI: https://doi.org/10.21741/9781644903056-5

Part of the book on Rare Earth

References
[1] H. E. Lee, J. H. Park, T. J. Kim, D. Im, J. H. Shin, D. H. Kim, B. Mohammad, I.-S. Kang and K. J. Lee, Advanced Functional Materials, 2018, 28, 1801690.
[2] Zhang, Q.; Xia, Z.; Cheng, Y. B.; Gu, M. Nat. Commun. 2018, 9, 1183. https://doi.org/10.1038/s41467-018-03589-y
[3] Gu, M.; Zhang, Q.; Lamon, S. Nat. Rev. Mater. 2016, 1, 16070. https://doi.org/10.1038/natrevmats.2016.70
[4] D. Reinsel, J. Gantz and J. Rydning, IDC White Paper, 2018.
[5] W.-X. Chu, R. Wang, P.-H. Hsu and C.-C. Wang, Journal of Building Engineering, 2020, 30, 101331. https://doi.org/10.1016/j.jobe.2020.101331
[6] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C. E. Graves, Z. Li, J. P.Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang and Q. Xia, Nature Electronics, 2017, 1, 52-59. https://doi.org/10.1038/s41928-017-0002-z
[7] C. Wu, T. W. Kim, H. Y. Choi, D. B. Strukov and J. J. Yang, Nat Commun, 2017, 8, 752.
[8] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H. P. Wong and H. Qian, Nat Commun, 2017, 8, 15199. https://doi.org/10.1038/ncomms15199
[9] Z. Sun, E. Ambrosi, A. Bricalli and D. Ielmini, Adv Mater, 2018, 30, 1802554. https://doi.org/10.1002/adma.201802554
[10] M. Gu, Q. Zhang and S. Lamon, Nature Reviews Materials, 2016, 1, 16070.
[11] J. S. Meena, S. M. Sze, U. Chand and T. Y. Tseng, Nanoscale Res Lett, 2014, 9, 526. https://doi.org/10.1186/1556-276X-9-526
[12] Y. Park and J. S. Lee, ACS Nano, 2017, 11, 8962-8969. https://doi.org/10.1021/acsnano.7b03347
[13] M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong and S. Mitra, Nature, 2017, 547, 74 https://doi.org/10.1038/nature22994
[14] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer and A. Faraon, Science, 2017, 357, 1392-1395. https://doi.org/10.1126/science.aan5959
[15] J. Zhao, X. Zheng, E. P. Schartner, P. Ionescu, R. Zhang, T. L. Nguyen, D. Jin and H. Ebendorff ‐ Heidepriem, Advanced Optical Materials, 2016, 4, 1507-1517. https://doi.org/10.1002/adom.201600296
[16] Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi and D. Jin, Nature, 2017, 543, 229-233. https://doi.org/10.1038/nature21366
[17] S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu and D. Jin, Nat Commun, 2018, 9, 2415. https://doi.org/10.1038/s41467-018-04813-5
[18] Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E.M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R.C. Leif, Y. Huo, J. Shen, J.A. Piper, J.P. Robinson, D. Jin, Nat. Photonics 8 (2014) 32-36, https://doi.org/10.1038/nphoton.2013.322
[19] Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, R.-J. Xie, ACS Appl. Mater. Interfaces 10 (2018) 1854-1864 https://doi.org/10.1021/acsami.7b17271
[20] Y. Zhuang, L. Wang, Y. Lv, T.L. Zhou, R.J. Xie, Adv. Funct. Mater. 28 (2018) 1705769 https://doi.org/10.1002/adfm.201705769
[21] D. Liu, L. Yuan, Y. Jin, H. Wu, Y. Lv, G. Xiong, G. Ju, L. Chen, S. Yang, Y. Hu, ACS Appl. Mater. Interfaces 11 (2019) 35023-35029. https://doi.org/10.1021/acsami.9b13011
[22] W. Li, Y. Zhuang, P. Zheng, T.-L. Zhou, J. Xu, J. Ueda, S. Tanabe, L. Wang, R.-J. Xie, ACS Appl. Mater. Interfaces 10 (2018) 27150-27159, https://doi.org/10.1021/acsami.8b10713
[23] L. Xiang, X. Yujie, S. Bo, Z. Hao-Li, C. Hao, C. Huijuan, L. Weisheng, T. Yu, Angew. Chem. Int. Ed. 2017, 56, 2689.
[24] R. Jiufeng, Y. Zhengwen, H. Anjun, Z. Hailu, Q. Jianbei, S. Zhiguo, ACS Appl. Mater. Interfaces 2018, 10, 14941.
[25] Z. Qi, D. Xuelin, X. Yuxiang, Z. Binbin, L. Shan, W. Qin, L. Yonggui, Y. Yajiang, W. Hong, ACS Appl. Mater. Interfaces 2020, 12, 28539.
[26] Y. Vivian Wing-Wah, C. Alan Kwun-Wa, H. Eugene Yau-Hin, Nat. Rev. Chem. 2020, 4, 528.
[27] H. Chen, Z. Dong, W. Chen, L. Sun, X. Du, Y. Zhao, P. Chen, Z. Wu, W. Liu, Y. Zhang, Adv. Opt. Mater. 2020, 8, 1902125. https://doi.org/10.1002/adom.201902125
[28] O. Xiangyu, Q. Xian, H. Bolong, Z. Jie, W. Qinxia, H. Zhongzhu, X. Lili, B. Hongyu, Y. Zhigao, C. Xiaofeng, W. Yiming, S. Xiaorong, L. Juan, C. Qiushui, Y. Huanghao, L. Xiaogang, Nature 2021, 590, 410.
[29] Y. Zhou, S. T. Han, X. Chen, F. Wang, Y. B. Tang, V. A. Roy, Nat. Commun. 2014, 5, 4720. https://doi.org/10.1038/ncomms5720
[30] Z. Yan, S. Haiqin, J. Qiannan, G. Lili, P. Dengfeng, Z. Qiwei, H. Xihong, Adv. Opt. Mater. 2021, 9, 2001626.
[31] Y. Song, M. Lu, G. A. Mandl, Y. Xie, G. Sun, J. Chen, X. Liu, J. A. Capobianco, L. Sun, Angew. Chem. 2021, 25, 23983. https://doi.org/10.1002/ange.202109532
[32] J. Lindmayer, Solid State Technol. 1988, 31, 135. https://doi.org/10.1016/0038-1101(88)90120-7
[33] Z. Long, Y. Wen, J. Zhou, J. Qiu, H. Wu, X. Xu, X. Yu, D. Zhou, J. Yu, Q. Wang, Adv. Opt. Mater. 2019, 7, 1900006. https://doi.org/10.1002/adom.201900006
[34] L. Yuan, Y. Jin, Y. Su, H. Wu, Y. Hu, S. Yang, Laser Photonics Rev. 2020, 14, 2000123. https://doi.org/10.1002/lpor.202000123
[35] W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wang, Y. Wen, J. Mater. Chem. C 1 (2013) 3004-3011. https://doi.org/10.1039/c3tc30182f
[36] K. Kumar, A.K. Singh, S.B. Rai, Spectrochim Acta A 102 (2013) 212-218. https://doi.org/10.1016/j.saa.2012.09.054
[37] Z. Wang, Z. Song, Q. Liu, Mater. Chem. Front. 5 (2021) 333-340. https://doi.org/10.1039/D0QM00488J
[38] L. Yuan, Y. Jin, D. Zhu, Z. Mou, G. Xie, Y. Hu, ACS Sustain. Chem. Eng. 8 (2020) 6543-6550. https://doi.org/10.1021/acssuschemeng.0c01377
[39] L. Yuan, Y. Jin, Y. Su, H. Wu, Y. Hu, S. Yang, Laser Photonics Rev 14 (2020),2000123. https://doi.org/10.1002/lpor.202000123
[40] S.W.S. Mckeever, Nucl. Instrum. Meth. B 184 (2004) 29-54. https://doi.org/10.1016/S0168-583X(01)00588-2
[41] E.G. Yukihara, S.W.S. McKeever, Radiat. Prot. Dosim. 147 (2011) 619-622. https://doi.org/10.1093/rpd/ncr357
[42] I. Wieder, L.R. Sarles, Phys. Rev. Lett. 6 (1961) 95-96. https://doi.org/10.1103/PhysRevLett.6.95
[43] X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 590 (2021) 410-415. https://doi.org/10.1038/s41586-021-03251-6
[44] Ph. Goldner, A. Ferrier, O. Guillot-Noël, Vol 46 (Eds.: J.-C. G. Bünzli, V. K. Pecharsky). North Holland, Amsterdam, 2015, 1- 78. https://doi.org/10.1016/B978-0-444-63260-9.00267-4
[45] W. Tittel, T. Chanelière, R. L. Cone, S. Kröll, S. A. Moiseev, M. Sellars, Laser & Photon. Rev. 2010, 4, 244-267. https://doi.org/10.1002/lpor.200810056
[46] C. W. Thiel, T. Böttger, R. L. Cone, J. Lumin. 2011, 131, 353-361. https://doi.org/10.1016/j.jlumin.2010.12.015
[47] M. P. Hedges, J. J. Longdell, Y. Li, M. J. Sellars, Nature 2010, 465, 1052-1056. https://doi.org/10.1038/nature09081
[48] I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, Nature Comm. 2010, 1, 1-7. https://doi.org/10.1038/ncomms1010
[49] C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, Nature 2011, 469, 508-511. https://doi.org/10.1038/nature09662
[50] I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, Nature Phot. 2012, 6, 234-237. https://doi.org/10.1038/nphoton.2012.34
[51] W. Tittel, T. Chanelière, R. L. Cone, S. Kröll, S. A. Moiseev, M. Sellars, Laser & Photon. Rev. 2010, 4, 244 https://doi.org/10.1002/lpor.200810056
[52] A. I. Lvovsky, B. C. Sanders, W. Tittel, Nature Phot. 2009, 3, 706-714. https://doi.org/10.1038/nphoton.2009.231
[53] R. M. Macfarlane, J. Lumin. 2002, 100, 1-20. https://doi.org/10.1016/S0022-2313(02)00450-7
[54] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, Nature 2010, 464, 45-53. https://doi.org/10.1038/nature08812
[54b] R. Blatt, C. F. Roos, Nature Phys. 2012, 8, 277-284. https://doi.org/10.1038/nphys2252
[55] J. Clarke, F. K. Wilhelm, Nature 2008, 453, 1031-1042. https://doi.org/10.1038/nature07128
[56] T. E. Northup, R. Blatt, Nature Phot. 2014, 8, 356-363. https://doi.org/10.1038/nphoton.2014.53
[57] C. W. Thiel, T. Böttger, R. L. Cone, J. Lumin. 2011, 131, 353-361. https://doi.org/10.1016/j.jlumin.2010.12.015
[58] A. M. Stoneham, Proc. Phys. Soc. London 1966, 89, 909-921. https://doi.org/10.1088/0370-1328/89/4/314
[59] A. M. Stoneham, Rev. Mod. Phys. 1969, 41, 82-108. https://doi.org/10.1103/RevModPhys.41.82
[60] E. P. Chukalina, M. N. Popova, S. L. Korableva, R. Yu. Abdusabirov, Phys. Lett. A 2000, 269, 348-350. https://doi.org/10.1016/S0375-9601(00)00273-5
[61] Zijlstra, P., Chon, J. W. M. & Gu, M. Nature 459, 410-413 (2009). https://doi.org/10.1038/nature08053
[62] Jeevan, M. M. et al Nanotechnology 23, 395201 (2012). https://doi.org/10.1088/0957-4484/23/39/395201
[63] Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Nature Rev. Immunol. 4, 648-655 (2004). https://doi.org/10.1038/nri1416
[64] Cui, H. H., Valdez, J. G., Steinkamp, J. A. & Crissman, H. A. Cytometry A 52A, 46-55 (2003). https://doi.org/10.1002/cyto.a.10022
[65] Watson, D. A. et al. Cytometry A 73A, 119-128 (2008). https://doi.org/10.1002/cyto.a.20520
[66] Betzig E, Trautman JK, Wolfe R, et al. Near-field magneto-optics and high density information storage. Appl Phys Lett, 1992, 61: 142-144 https://doi.org/10.1063/1.108198
[67] Li L, Gattass RR, Gershgoren E, et al. Science, 2009, 324: 910-913 https://doi.org/10.1126/science.1168996
[68] Li W, Zhuang Y, Zheng P, et al. ACS Appl Mater Interfaces, 2018, 10: 27150-27159 https://doi.org/10.1021/acsami.8b10713
[69] Zhuang Y, Wang L, Lv Y, et al. Adv Funct Mater, 2018, 28: 1705769
[70] Long Z, Wen Y, Zhou J, et al. Adv Opt Mater, 2019, 7: 1900006
[71] Lin S, Lin H, Huang Q, et al. Laser Photonics Rev, 2019, 13: 1970022 https://doi.org/10.1002/lpor.201900081
[72] J.C. Zhang, C. Pan, Y.F. Zhu, L.Z. Zhao, H.W. He, X.F. Liu and J.R. Qiu, Adv. Mater., 2018, 30(49), 1804644. https://doi.org/10.1002/adma.201870373
[73] J. Han, J. Sun, Y. Li, Y. Duan and T. Han, J. Mater. Chem. C, 2016, 4(39), 9287. https://doi.org/10.1039/C6TC03131E
[74] D.J. Wales, Q. Cao, K. Kastner, E. Karjalainen, G.N. Newton and V. Sans, Adv. Mater., 2018, 30(26), 1800159. https://doi.org/10.1002/adma.201800159
[75] J. Liu, H. Rijckaert, M. Zeng, K. Haustraete, B. Laforce, L. Vincze, I.V. Driessche, A.M. Kaczmarek and R. Van Deun, Adv. Funct. Mater., 2018, 28(17), 1707365. https://doi.org/10.1002/adfm.201707365
[76] K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai and H. Lin, Angew. Chem. Int. Ed., 2016, 55, 7231. https://doi.org/10.1002/anie.201602445
[77] H.Q. Sun, Y. Zhang, J. Liu, D.F. Peng, Q.W. Zhang and X.H. Hao, J. Am. Ceram. Soc., 2018, 101, 5659. https://doi.org/10.1111/jace.15885
[78] Ortu, A., Holzäpfel, A., Etesse, J. et al. npj Quantum Inf 8, 29 (2022) https://doi.org/10.1038/s41534-022-00541-3
[79] Lu, Y., Zhao, J., Zhang, R. et al. Nature Photon 8, 32-36 (2014) https://doi.org/10.1038/nphoton.2013.322
[80] Zhuang, Y.; Wang, L.; Lv, Y.; Zhou, T. L.; Xie, R. J. Adv. Funct. Mater. 2018, 28, 1705769. https://doi.org/10.1002/adfm.201705769
[81] Zhuang, Y.; Lv, Y.; Wang, L.; Chen, W.; Zhou, T. L.; Takeda, T.; Hirosaki, N.; Xie, R. J.; ACS Appl. Mater. Inter. 2018, 10, 1854-1864. https://doi.org/10.1021/acsami.7b17271
[82] H.Q. Sun, Y. Zhang, J. Liu, D.F. Peng, Q.W. Zhang and X.H. Hao, J. Am. Ceram. Soc., 2018, 101, 5659. https://doi.org/10.1111/jace.15885
[83] Q.W. Zhang, Y. Zhang, H.Q. Sun, W. Geng, X.S. Wang, X.H. Hao and S.L. An, ACS Appl. Mater. Interfaces, 2016, 8, 34581. https://doi.org/10.1021/acsami.6b11825
[84] J.C. Zhang, C. Pan, Y.F. Zhu, L.Z. Zhao, H.W. He, X.F. Liu and J.R. Qiu, Adv. Mater., 2018, [30(49), 1804644.
[85] J. Han, J. Sun, Y. Li, Y. Duan and T. Han, J. Mater. Chem. C, 2016, 4(39), 9287. https://doi.org/10.1039/C6TC03131E
[86] D.J. Wales, Q. Cao, K. Kastner, E. Karjalainen, G.N. Newton and V. Sans, Adv. Mater., 2018, [30(26), 1800159.
[87] J. Liu, H. Rijckaert, M. Zeng, K. Haustraete, B. Laforce, L. Vincze, I.V. Driessche, A.M. [Kaczmarek and R. Van Deun, Adv. Funct. Mater., 2018, 28(17), 1707365. https://doi.org/10.1002/adfm.201870112
[88] K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai and H. Lin, Angew. Chem. Int. Ed., 2016, 55, 7231. https://doi.org/10.1002/anie.201602445
[89] H. Sun, X. Li , Y. Zhu, X. Wang, Q. Zhang and X. Hao, J. Mater. Chem. C, 2019,7, 5782-5791 https://doi.org/10.1039/C9TC00834A
[90] Li, W.; Zhuang, Y.; Zheng, P.; Zhou, T. L.; Xu, J.; Ueda, J.; Tanabe, S.; Wang, L.; Xie, R. J. ACS Appl. Mater. Inter. 2018, 10, 27150-27159. https://doi.org/10.1021/acsami.8b10713
[91] Liu, Z.; Zhao, L.,Chen, W, Fan, X.; Yang, X.; Tian, S.; Yu, X.; Qiu, J.; Xu, X. J. Mater. Chem. C 2018, 6, 11137- 11143. https://doi.org/10.1039/C8TC04018D
[92] Sun, Z.; Yang, J.; Huai, L.; Wang, W, Ma, Z,Sang, J, Zhang, J, Li, H.; Ci, Z, Wang, Y. ACS Appl. Mater. Inter. 2018, 10, 21451-21457. https://doi.org/10.1021/acsami.8b08977
[93] Wang, W, Yang, J.; Zou, Z,Zhang, J, Li, H.; Wang, Y. Ceram. Int. 2018, 44, 10010-10014. https://doi.org/10.1016/j.ceramint.2018.02.224
[94] Lin, S.; Lin, S.; Huang, Q.; Cheng, Y.; Xu, J.; Wang, J.; Xiang, X.; Wang, C.; Zhang, L.; Wang, Y. A Laser & Photonics Rev. 2019, 13, 1900006. https://doi.org/10.1002/lpor.201900006
[95] Haase, M. & Schäfer, H. Angew. Chem. Int. Ed. 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
[96] Chang, H. et al. Nanomaterials 5, 1-25 (2014). https://doi.org/10.3390/nano5010001
[97] Wang, M., Abbineni, G., Clevenger, A., Mao, C. & Xu, S. Nanomedicine 7, 710-729 (2011). https://doi.org/10.1016/j.nano.2011.02.013
[98] Wang, F. et al. Nature 463, 1061-1065 (2010). https://doi.org/10.1038/nature08777
[99] Auzel, F. Chem. Rev. 104, 139-174 (2004). https://doi.org/10.1021/cr020357g
[100] Xie et al. Light: Science & Applications (2022) 11:150 https://doi.org/10.1038/s41377-022-00813-9
[101] S. Wang, J. Lin, Y. He, J. Chen, C. Yang, F. Huang and D. Chen, Chemical Engineering Journal, 2020, 394, 124889. https://doi.org/10.1016/j.cej.2020.124889
[102] Kolesov, R. et al. Phys. Rev. B 84, 153413 (2011). https://doi.org/10.1103/PhysRevB.84.153413
[103] Z. Long, Y. Wen, J. Zhou, J. Qiu, H. Wu, X. Xu, X. Yu, D. Zhou, J. Yu, Q. Wang, Adv. Opt. Mater. 2019, 7, 1900006. https://doi.org/10.1002/adom.201900006
[104] L. Yuan, Y. Jin, Y. Su, H. Wu, Y. Hu, S. Yang, Laser Photonics Rev. 2020, 14, 2000123. https://doi.org/10.1002/lpor.202000123
[105] Y. Li, M. Gecevicius, J. Qiu, Chem. Soc. Rev. 2016, 45, 2090. https://doi.org/10.1039/C5CS00582E
[106] Mingxue Deng, Qian Liu, Ying Zhang, Caiyan Wang, Xinjun Guo, Zhenzhen Zhou, and Xiaoke Xu Adv. Optical Mater. 2021, 2002090
[107] Dong Liu, Lifang Yuan, Yahong Jin, Haoyi Wu, Yang Lv, Guangting Xiong, Guifang Ju, Li Chen, Shihe Yang, Yihua Hu ACS Appl. Mater. Interfaces 2019, 11, 38, 35023-35029 https://doi.org/10.1021/acsami.9b13011
[108] J. Du , S. Lyu a, K. Jiang , D. Huang b, J. Li , R. Van Deun , D. Poelman , H. Lin, Materials Today Chemistry 24 (2022) 100906 https://doi.org/10.1016/j.mtchem.2022.100906
[109] L. Yuan, Y. Jin, Y. Su, H. Wu, Y. Hu, S. Yang, Laser Photonics Rev 14 (2020), 2000123. https://doi.org/10.1002/lpor.202000123
[110] S.W.S. Mckeever, Nucl. Instrum. Meth. B 184 (2004) 29-54. https://doi.org/10.1016/S0168-583X(01)00588-2
[111] E.G. Yukihara, S.W.S. McKeever Radiat. Prot. Dosim. 147 (2011) 619-622. https://doi.org/10.1093/rpd/ncr357
[112] I. Wieder, L.R. Sarles, Phys. Rev. Lett. 6 (1961) 95-96. https://doi.org/10.1103/PhysRevLett.6.95
[113] S.H. Von, Braz. J. Phys. 29 (1999) 254-268. https://doi.org/10.1590/S0103-97331999000200008
[114] Junming Zhang, Lifang Yuan, Yahong Jin, Haoyi Wu, Li Chen, Yihua Hu Journal of Luminescence 241 (2022) 118518 https://doi.org/10.1016/j.jlumin.2021.118518
[115] R. Exelby, R. Grintetr, Chem. Rev. 65 (1965) 247-260. https://doi.org/10.1021/cr60234a005
[116] G.H. Brown, Photochromism, Techniques of Chemistry (1971) 853.
[117] T. Wei, B. Jia, L. Shen, C. Zhao, L. Wu, B. Zhang, X. Tao, S. Wu, Y. Liang, J. Eur. Ceram. Soc. 40 (2020) 4153-4163. https://doi.org/10.1016/j.jeurceramsoc.2020.04.014
[118] M. Gu, X. Li, Y. Cao, , Light & Applications 3 (2014) 177. https://doi.org/10.1038/lsa.2014.58
[119] M. Tu, H. Reinsch, S. Rodríguez-Hermida, R. Verbeke, T. Stassin, W. Egger, M. Dickmann, B. Dieu, J. Hofkens, I. Vankelecom, Angew. Chem. Int. Ed. 58 (2019) 2423-2427. https://doi.org/10.1002/anie.201813996
[120] Ruiting Zhang, Yahong Jin, Lifang Yuan, Chuanlong Wang, Guangting Xiong, Haoyi Wu, Li Chen, Yihua Hu Ceramics International 48 (2022) 1836-1843 https://doi.org/10.1016/j.ceramint.2021.09.266
[121] Xue Bai, Zhengwen Yang, Yanhong Zhan, Zhen Hu, Youtao Ren, Mingjun Li, Zan Xu, Asad Ullah, Imran Khan, Jianbei Qiu, Zhiguo Song, Bitao Liu, and Yuehui Wang ACS Appl. Mater. Interfaces 2020, 12, 19, 21936-21943 https://doi.org/10.1021/acsami.0c05909