Perovskite Solar Cells: Current Strategy and Future Perspective

$30.00

Perovskite Solar Cells: Current Strategy and Future Perspective

Govindhasamy Murugadoss, Manogaran Rajasekaramoorthy, Alagarsamy Pandikumar

Perovskite solar cells (PSCs) have demonstrated notable improvements in their power conversion efficiency (PCE), indicating both academic research and commercial application value. The PCE gap is closing when compared to silicon cells sold in stores. Large-scale production, cost, and stability, however, are still far behind. Every functional layer of perovskite solar cells has a range of relevant research for scaling up the preparation of high-efficiency and stable PSCs. The functional layers, such as the electron transport layer, perovskite layer, hole transport layer, and electrode, have been the subject of recent research, which is systematically summarised in this chapter. Significant advancements in device stability and efficiency over the last few decades can be attributed to massive research efforts in compositional, process, and interfacial engineering. We discuss the benefits and drawbacks of PSCs in comparison to the current silicon photovoltaic technology with regard to commercial applications. Moreover, we discuss the structural stability, optical properties, perovskite device structure and operation principle, High efficiency PSCs, Perovskite powder production for diverse application. PSCs provide low manufacturing costs and solution processability, but on the road to commercialization, their poor stability and element toxicity need to be addressed. It is yet unknown how to resolve the costly and unstable issues with electrode materials and Spiro-OMeTAD. There is also discussion of the primary issues and the path for their future growth. In addition, we offer our predictions for PSC commercialization in the solar industry. PSCs are expected to show greater promise in tandem configurations and low-cost modules.

Keywords
Perovskite Film, Band Gap Tuning, Cubic Structure, Stability, Fast Crystallization, Scale-Up

Published online 3/25/2024, 23 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Govindhasamy Murugadoss, Manogaran Rajasekaramoorthy, Alagarsamy Pandikumar, Perovskite Solar Cells: Current Strategy and Future Perspective, Materials Research Foundations, Vol. 163, pp 145-167, 2024

DOI: https://dx.doi.org/10.21741/9781644903032-6

The article was published as article 6 of the book Third Generation Photovoltaic Technology

References
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society. 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r
[2] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science. 338 (2012) 643–647. https://doi.org/10.1126/science.1228604
[3] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (2013) 316–319. https://doi.org/10.1038/nature12340
[4] N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature. 517 (2015) 476–480. https://doi.org/10.1038/nature14133
[5] P. Kajal, K. Ghosh, S. Powar, Manufacturing Techniques of Perovskite Solar Cells, in: 2018: pp. 341–364. https://doi.org/10.1007/978-981-10-7206-2_16
[6] A.M. Elseman, A.H. Zaki, A.E. Shalan, M.M. Rashad, Q.L. Song, TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells, Industrial & Engineering Chemistry Research. 59 (2020) 18549–18557. https://doi.org/10.1021/acs.iecr.0c03415
[7] N. kour, R. Mehra, Chandni, Efficient design of perovskite solar cell using mixed halide and copper oxide, Chinese Physics B. 27 (2018) 18801. https://doi.org/10.1088/1674-1056/27/1/018801
[8] S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations, in: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016: pp. 747–750. https://doi.org/10.1109/PVSC.2016.7749702
[9] C.Y. Xu, W. Hu, G. Wang, L. Niu, A.M. Elseman, L. Liao, Y. Yao, G. Xu, L. Luo, D. Liu, G. Zhou, P. Li, Q. Song, Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High-Performance Inverted Perovskite Solar Cells, ACS Nano. 14 (2020) 196–203. https://doi.org/10.1021/acsnano.9b07594
[10] M. Yang, D.H. Kim, T. Klein, Z. Li, M. Reese, B. Tremolet de Villers, J. Berry, M.F.A.M. Hest, K. Zhu, Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization, ACS Energy Letters. 3 (2018). https://doi.org/10.1021/acsenergylett.7b01221
[11] A.R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N.W. Duffy, L. Spiccia, U. Bach, Y.-B. Cheng, Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology, Advanced Functional Materials. 26 (2016) 1278–1285. https://doi.org/https://doi.org/10.1002/adfm.201504190
[12] V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften. 14 (1926) 477–485. https://doi.org/10.1007/BF01507527
[13] G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog, Chemical Science. 5 (2014) 4712–4715. https://doi.org/10.1039/C4SC02211D
[14] C.C. Stoumpos, M.G. Kanatzidis, The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors, Accounts of Chemical Research. 48 (2015) 2791–2802. https://doi.org/10.1021/acs.accounts.5b00229
[15] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites, Acta Crystallographica Section B. 64 (2008) 702–707. https://doi.org/https://doi.org/10.1107/S0108768108032734
[16] N. McKinnon, D. Reeves, M. Akabas, 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals, The Journal of General Physiology. 138 (2011) 453–466. https://doi.org/10.1085/jgp.201110686
[17] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science. 7 (2014) 982–988. https://doi.org/10.1039/C3EE43822H
[18] P.-P. Sun, Q.-S. Li, L.-N. Yang, Z.-S. Li, Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+, Nanoscale. 8 (2016) 1503–1512. https://doi.org/10.1039/C5NR05337D
[19] A.A. Bakulin, O. Selig, H.J. Bakker, Y.L.A. Rezus, C. Müller, T. Glaser, R. Lovrincic, Z. Sun, Z. Chen, A. Walsh, J.M. Frost, T.L.C. Jansen, Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites, The Journal of Physical Chemistry Letters. 6 (2015) 3663–3669. https://doi.org/10.1021/acs.jpclett.5b01555
[20] J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells, Nano Letters. 14 (2014) 2584–2590. https://doi.org/10.1021/nl500390f
[21] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3, Advanced Materials. 26 (2014) 4991–4998. https://doi.org/https://doi.org/10.1002/adma.201401137
[22] G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells, Journal of Materials Chemistry A. 3 (2015) 19688–19695. https://doi.org/10.1039/C5TA06398A
[23] M. Kulbak, D. Cahen, G. Hodes, How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr 3 Cells, The Journal of Physical Chemistry Letters. 6 (2015) 150610174239009. https://doi.org/10.1021/acs.jpclett.5b00968
[24] M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Steric engineering of metal-halide perovskites with tunable optical band gaps, Nature Communications. 5 (2014) 5757. https://doi.org/10.1038/ncomms6757
[25] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Letters. 13 (2013) 1764–1769. https://doi.org/10.1021/nl400349b
[26] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science. 9 (2016) 1989–1997. https://doi.org/10.1039/C5EE03874J
[27] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature. 592 (2021) 381–385. https://doi.org/10.1038/s41586-021-03406-5
[28] T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, Journal of Materials Chemistry A. 3 (2015) 8943–8969. https://doi.org/10.1039/C4TA05226A
[29] M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells – A review, Renewable and Sustainable Energy Reviews. 77 (2017) 131–146. https://doi.org/https://doi.org/10.1016/j.rser.2017.04.003
[30] G.-H. Kim, D.S. Kim, Development of perovskite solar cells with >25% conversion efficiency, Joule. 5 (2021) 1033–1035. https://doi.org/https://doi.org/10.1016/j.joule.2021.04.008
[31] D. Yang, R. Yang, J. Zhang, Z. Yang, S. (Frank) Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2, Energy & Environmental Science. 8 (2015) 3208–3214. https://doi.org/10.1039/C5EE02155C
[32] T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, R. Greenough, Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies, Renewable and Sustainable Energy Reviews. 80 (2017) 1321–1344. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.095
[33] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Advanced Materials. 25 (2013) 3727–3732. https://doi.org/https://doi.org/10.1002/adma.201301327
[34] Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, J. Huang, Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process, Energy & Environmental Science. 8 (2015) 2464–2470. https://doi.org/10.1039/C5EE01179E
[35] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science. 350 (2015) 944–948. https://doi.org/10.1126/science.aad1015
[36] Y. Liao, X. Jiang, W. Zhou, Z. Shi, B. Li, Q. Mi, Z. Ning, Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells, Frontiers of Optoelectronics. 10 (2017) 103–110. https://doi.org/10.1007/s12200-017-0716-6
[37] Y. Li, S. Ye, W. Sun, W. Yan, Y. Li, Z. Bian, Z. Liu, S. Wang, C. Huang, Hole-conductor-free planar perovskite solar cells with 16.0% efficiency, Journal of Materials Chemistry A. 3 (2015) 18389–18394. https://doi.org/10.1039/C5TA05989E
[38] W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nature Communications. 6 (2015) 6700. https://doi.org/10.1038/ncomms7700
[39] Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, L. Zhang, Y. Chen, Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells, Organic Electronics. 30 (2016) 281–288. https://doi.org/https://doi.org/10.1016/j.orgel.2016.01.002
[40] E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, J. Seo, Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene), Nature. 567 (2019) 511–515. https://doi.org/10.1038/s41586-019-1036-3
[41] M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells, Joule. 3 (2019) 2179–2192. https://doi.org/10.1016/j.joule.2019.06.014
[42] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nature Photonics. 13 (2019) 460–466. https://doi.org/10.1038/s41566-019-0398-2
[43] J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management, Nature. 590 (2021) 587–593. https://doi.org/10.1038/s41586-021-03285-w
[44] NREL (2021). Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.
[45] G. Murugadoss, M. Rajesh Kumar, V.M. Shanmugam, Rational design and development of perovskite materials: Analysis of structural, optical, morphological and phase transition, Materials Science in Semiconductor Processing. 117 (2020) 105177. https://doi.org/https://doi.org/10.1016/j.mssp.2020.105177
[46] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Márquez, A.B. Morales Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science. 370 (2020) 1300–1309. https://doi.org/10.1126/science.abd4016
[47] P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Solar Energy. 198 (2020) 665–688. https://doi.org/https://doi.org/10.1016/j.solener.2020.01.080
[48] T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen, S. Zhang, M. Cai, S. Dai, J. Zhang, J. Liu, Z. Zhou, X. Liu, H. Segawa, H. Tan, Q. Tang, J. Fang, Y. Li, L. Ding, Z. Ning, Y. Qi, Y. Zhang, L. Han, The Main Progress of Perovskite Solar Cells in 2020–2021, Nano-Micro Letters. 13 (2021) 152. https://doi.org/10.1007/s40820-021-00672-w
[49] European Perovskite Initiative (available at: https://epki.eu/).
[50] U.S. MAP -Manufacturing of Advanced Perovskites (available at: www.usa-perovskites.org/index.html)
[51] T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam, M.U. Khandaker, Stability of perovskite solar cells: issues and prospects, RSC Advances. 13 (2023) 1787–1810. https://doi.org/10.1039/D2RA05903G
[52] H. Li, W. Zhang, Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment, Chemical Reviews. 120 (2020) 9835–9950. https://doi.org/10.1021/acs.chemrev.9b00780