The Future of Solar Energy: A Deep Dive into Third Generation Solar Cells

$30.00

The Future of Solar Energy: A Deep Dive into Third Generation Solar Cells

A. Murugeswari, I.V. Asharani, N. Arunai Nambi Raj

This chapter provides a comprehensive discussion of the developments in solar cells encompassing first, second, and third-generation solar cells. Specifically, the focus lies on third-generation solar cells, including an overview of their progression and a performance comparison with other genres of solar cells. The operational principles and materials used in photovoltaic studies are elaborated. Moreover, the chapter explores recent breakthroughs aimed at enhancing the efficiency of DSSC components, organometal halide perovskite compounds, and organic solar cells.

Keywords
Solar Cells, Third Generation, DSSC, Charge Transfer, Perovskite Solar Cells, Organic Solar Cells, Electron Transport Layer

Published online 3/25/2024, 37 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: A. Murugeswari, I.V. Asharani, N. Arunai Nambi Raj, The Future of Solar Energy: A Deep Dive into Third Generation Solar Cells, Materials Research Foundations, Vol. 163, pp 1-37, 2024

DOI: http://dx.doi.org/10.21741/9781644903032-1

The article was published as article 1 of the book Third Generation Photovoltaic Technology

References
[1] D.M. Chapin, C.S. Fuller, G. L. Pearson. J.Appl. Phys. 25, 676, (1954). https://doi.org/10.1063/1.1721711
[2] C.E. Frittis, Am. J. Sci. 26, 465, (1883).
[3] W. Smith, Nature, 7, 303, (1873). https://doi.org/10.1038/007303c0
[4] D. Neuhaus, M. Adolf, Adv. Optoelectron. 024521, 1, (2007).
[5] M. Gul, Y. Kotak, T. Muneer, Energy Explor. Exploit. 34, 485, (2016). https://doi.org/10.1177/0144598716650552
[6] C. Battaglia, A. Cuevas, S. DeWolf, Energy Environ. Sci. 9, 1552, (2016). https://doi.org/10.1039/C5EE03380B
[7] B. Parida, S. Iniyan, R. Goic, Renew. Sustain. Energy Rev. 15, 1625, (2011.) https://doi.org/10.1016/j.rser.2010.11.032
[8] W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510, (1961). https://doi.org/10.1063/1.1736034
[9] K Pal, KB Thapa, A Bhaduri, Adv. Sci. Engg and Med., 10, 645, (2018). https://doi.org/10.1166/asem.2018.2225
[10] S Siebentritt, Thin Solid Films, 535, 1, (2013). https://doi.org/10.1016/j.tsf.2012.12.089
[11] Z. Hens, I. Moreels, J. Mater. Chem, 22, 10406, (2012). https://doi.org/10.1039/c2jm30760j
[12] Y. Hishikawa, E.D. Dunlop, D.H. Levi, M.A. Green, J. Hohl, E. Masahiro, Y. Anita, W.Y.H. Baillie, Prog. Photovolt. Res. Appl. 27, 565, (2019).
[13] B. O’regan, M. Grätzel, Nature, 353, 737, (1991). https://doi.org/10.1038/353737a0
[14] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595, (2010). https://doi.org/10.1021/cr900356p
[15] F. Babar, U. Mehmood, H. Asghar, M. H. Mehdi, A. Ul Haq Khan, H. Khalid, N. Huda, Z. Fatima, Renew Sustain Energy Rev , 129, 109919, (2020). https://doi.org/10.1016/j.rser.2020.109919
[16] I. Joseph, H. Louis, T. O. Unimuke, I. S. Etim, M. M. Orosun, J. Odey, Appl. Sol. Energy., 56, 334, (2020). https://doi.org/10.3103/S0003701X20050072
[17] J. Gong, J. Liang, K. Sumathy, Renew Sustain Energy Rev, 16, 5848-60, (2012). https://doi.org/10.1016/j.rser.2012.04.044
[18] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem Rev, 110, 6595, (2010). https://doi.org/10.1021/cr900356p
[19] N. A Karim, U Mehmood , HF Zahid, T. Asif, Sol Energy, 185, 165, (2019). https://doi.org/10.1016/j.solener.2019.04.057
[20] D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Renew Sustain Energy Rev, 60, 356, (2016). https://doi.org/10.1016/j.rser.2016.01.104
[21] K. Sayama, H. Sugihara, H. Arakawa, Chem Mater, 10, 3825, (1998). https://doi.org/10.1021/cm980111l
[22] M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, M. Gr€atzel, Helv , Chim Acta, 73, 1788, (1990). https://doi.org/10.1002/hlca.19900730624
[23] M. K. Nazeeruddin, P. Pechy, M. Gr€atzel, Chem Commun, 6, 1705, (1997). https://doi.org/10.1039/a703277c
[24] M. R. Narayan, Renew Sustain Energy Rev, 16, 208, (2012).
[25] D. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Gr€atzel,S.M. Zakeeruddin, M. Gr€atzel , Adv Mater, 19,1133, (2007). https://doi.org/10.1002/adma.200602172
[26] H. Kusama, H. Arakawa, Energy Mater Sol Cells, 85, 333, (2005). https://doi.org/10.1016/j.solmat.2004.05.003
[27] A.F. Nogueira, C. Longo, M.A. De Paoli, Coord Chem Rev, 248, 1455, (2004). https://doi.org/10.1016/j.ccr.2004.05.018
[28] SM Zakeeruddin, M Gratzel, Adv. Funct. Mater. , 19, 2187, (2009). https://doi.org/10.1002/adfm.200900390
[29] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure Appl Chem, 80, 2241, (2008). https://doi.org/10.1351/pac200880112241
[30] Y-H Wei, M-C Tsai, C-CM Ma, H-C Wu, F-G Tseng, C-H Tsai , C-K Hsieh, Nanoscale. Res. Lett., 10, 467, (2015).
[31] J. M. Cole, U.F.J. Mayer, Langmuir, 38, 871, (2022). https://doi.org/10.1021/acs.langmuir.1c02165
[32] V. Rondán-Gómez, I. Montoya De Los Santos, D. Seuret-Jiménez, F. Ayala-Mato, A. Zamudio-Lara, T. Robles-Bonilla, M. Courel, Appl. Phys. A., 125, 836 (2019). https://doi.org/10.1007/s00339-019-3116-5
[33] [JR Durrant, SA Haque, E Palomares, Coord. Chem. Rev, 248, 1247 (2004). https://doi.org/10.1016/j.ccr.2004.03.014
[34] SCT Lau, J Dayou, CS Sipaut, RF Mansa, Int J Renew Energy Resour, 4, 665, (2014).
[35] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. J. Am Chem Soc, 131 ,6050, (2009). https://doi.org/10.1021/ja809598r
[36] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro and N. G. Park, , Sci. Rep., 2, 591, (2012).
[37] Md Moniruddin, B Ilyassov, X Zhao, E Smith, T Serikov, N Ibrayev, R Asmatulu, N Nuraje, Mater. Today Energy, 7, 246-259, (2018). https://doi.org/10.1016/j.mtener.2017.10.005
[38] JY Kim, JW Lee, HS Jung, H Shin, NG Park, Chem Rev, 120, 7867, (2020). https://doi.org/10.1021/acs.chemrev.0c00107
[39] J Xiao, J Shi, D Li, Q Meng, Sci China Chem, 58, 221, (2015). https://doi.org/10.1007/s11426-014-5289-2
[40] T. A. Chowdhury, Md. A. B. Zafar, Md. S. Islam, M. Shahinuzzaman, M. A. Islam, M. U. Khandaker, RSC Adv., 13, 1787, (2023). https://doi.org/10.1039/D2RA05903G
[41] J Yan, w Qiu, G Wu, P Heremans, H Chen, J Mater Chem A, 6, 11063, (2018) https://doi.org/10.1039/C8TA02288G
[42] MA Green, A Ho-Baillie, HJ Snaith. Nat Photon, 8, 506, (2014). https://doi.org/10.1038/nphoton.2014.134
[43] MA Haque, J Troughton, D Baran. Adv Energy Mater, 10, 1902762, (2020). https://doi.org/10.1002/aenm.201902762
[44] B. Chen, M. Yang, S. Priya, K. Zhu, J. Phys. Chem. Lett. 7, 905, (2016). https://doi.org/10.1021/acs.jpclett.6b00215
[45] S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035, (2014). https://doi.org/10.1021/jz500279b
[46] R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, J. Phys. Chem. C, 119, 3545, (2015). https://doi.org/10.1021/jp512936z
[47] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764, (2013). https://doi.org/10.1021/nl400349b
[48] T. A. Chowdhury, Md. A. B. Zafar, Md. S. Islam, M. Shahinuzzaman, M. A. Islam, M. U. Khandaker, RSC Adv., 13, 1787, (2023). https://doi.org/10.1039/D2RA05903G
[49] O. Knop, R.E. Wasylishen, M.A. White, T.S. Cameron, M.J.M. Van Oort, Can. J. Chem. 68, 412, (1990). https://doi.org/10.1139/v90-063
[50] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982, (2014). https://doi.org/10.1039/c3ee43822h
[51] N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grtäzel, Angew. Chemie – Int. Ed. 53, 3151, (2014). https://doi.org/10.1002/anie.201309361
[52] D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gra tzel, A. Hagfeldt, Sci. Adv. 2, 1501170, (2016).
[53] S. Nair, S. B. Patel, J. V. Gohel, Mater. Today Energy 17, 100449, (2020). https://doi.org/10.1016/j.mtener.2020.100449
[54] C. Yi, X. Li, J. Luo, S.M. Zakeeruddin, M. Grätzel, D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science (80), 351, 151-155, (2016). https://doi.org/10.1126/science.aad5845
[55] M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206, (2016). https://doi.org/10.1126/science.aah5557
[56] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9, 1989, (2016). https://doi.org/10.1039/C5EE03874J
[57] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H. J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582, (2015). https://doi.org/10.1038/nphys3357
[58] N. Marinova, S. Valero, J. L. Delgado, Jour. of Colloid and Interf. Sci, 488, 373, (2017). https://doi.org/10.1016/j.jcis.2016.11.021
[59] E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Nat. Commun. 5, 3461, (2014). https://doi.org/10.1038/ncomms4461
[60] Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photonics 9, 106, (2014). https://doi.org/10.1038/nphoton.2014.284
[61] Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 33, 2102420, (2021). https://doi.org/10.1002/adma.202102420
[62] H. Kallmann, M. Pope, Photovoltaic effect in organic crystals, J. Chem. Phys. 30, 585, (1959). https://doi.org/10.1063/1.1729992
[63] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183, (1986). https://doi.org/10.1063/1.96937
[64] W.B. Tarique and A. Uddin , Mater. Sci. in Semicond. 163, 107541, (2023). https://doi.org/10.1016/j.mssp.2023.107541
[65] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science, 270, 1789, (1995). https://doi.org/10.1126/science.270.5243.1789
[66] J. Fu, P.W.K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 14, 1760, (2023).
[67] L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science , 361, 1094, (2018). https://doi.org/10.1126/science.aat2612
[68] X. Xu, Y. Li, Q. Peng, Nano Select 1, 30, (2020). https://doi.org/10.1002/nano.202000012
[69] X. Guo, D. Li, Y. Zhang, M. Jan, J. Xu, Z. Wang, B. Li, S. Xiong, Y. Li, F. Liu, J. Tang, C. Duan, M. Fahlman, Q. Bao, Org. Electron. 71, 65, (2019). https://doi.org/10.1016/j.orgel.2019.05.004
[70] Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, J. Wang, ACS Energy Lett. 3, 555, (2018). https://doi.org/10.1021/acsenergylett.8b00100
[71] X. Xu, L. Yu, H. Meng, L. Dai, H. Yan, R. Li, Q. Peng, Adv. Funct. Mater. 32, 2108797, (2022).
[72] X. Huang, B. Sun, Y. Li, C. Jiang, D. Fan, J. Fan, S.R. Forrest, Appl. Phys. Lett. 116, 153501, (2020). https://doi.org/10.1063/5.0005172
[73] H.-L. Yip, A.K.-Y. Jen, Energy Environ. Sci. 5, 5994, (2012). https://doi.org/10.1039/c2ee02806a
[74] Y. Wu, H. Bai, Z. Wang, P. Cheng, S. Zhu, Y. Wang, W. Ma, X. Zhan, Energy Environ. Sci. 8, 3215, (2015). https://doi.org/10.1039/C5EE02477C
[75] R. Sorrentino, E. Kozma, S. Luzzati, R. Po, Energy Environ. Sci. 14, 180, (2021). https://doi.org/10.1039/D0EE02503H
[76] Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27, 1170, (2015). https://doi.org/10.1002/adma.201404317
[77] P. Li, Z.-H. Lu, Small Science 1, 2000015, (2021).
[78] H. Zhang, Y. Li, X. Zhang, Y. Zhang, H. Zhou, Mater. Chem. Front. 4, 2863, (2020). https://doi.org/10.1039/D0QM00398K
[79] J.L. Brédas, J.E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 42, 1691, (2009). https://doi.org/10.1021/ar900099h
[80] K.A. Mazzio, C.K. Luscombe, Chem. Soc. Rev. 44, 78, (2015). https://doi.org/10.1039/C4CS00227J
[81] K. Feron, W.J. Belcher, C.J. Fell, P.C. Dastoor, Int. J. Mol. Sci. 13, 17019, (2012). https://doi.org/10.3390/ijms131217019
[82] A. Ghosh, P. Selvaraj, S. Sundaram, T.K. Mallick, Sol. Energy 163, 537, (2018). https://doi.org/10.1016/j.solener.2018.02.021
[83] E. Mirabi, F. A. Abarghuie ,R. Arazi, Clean Energy, 5, 505, (2021). https://doi.org/10.1093/ce/zkab031
[84] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, Nat. Energy. 2, 17032, (2017). https://doi.org/10.1038/nenergy.2017.32