Toxicity of Nanoparticles in Biological Systems

$30.00

Toxicity of Nanoparticles in Biological Systems

Muhammad Umar Ijaz, Ali Akbar, Asma Ashraf, Muhammad Saqalein, Hammad Ahmad Khan, Sumreen Hayat, Saima Muzammil

Nanoparticles (NPs) are minute particles with sizes ranging from 1 to 100 nanometers. They are characterized by their unique physiochemical properties due to their small size, which makes them valuable in several fields such as medicine, electronics, energy and material science. They are also used for drug delivery, imaging, energy applications and improving material properties. However, the potential toxicity of NPs to biological systems has raised concerns in recent years. The toxicity of NPs to biological systems arises from their physiochemical properties and interactions with biological components. These interactions can lead to the induction of various cellular pathways, including oxidative stress (OS), inflammation, genotoxicity and immune dysregulation among others, which can result in cellular damage and adverse effects on various organs and tissues. The toxic effects of NPs can vary with their size, shape, surface charge, concentration, mode of administration, as well as the type of biological system being exposed. Therefore, understanding NPs-instigated toxicity is critical for safe and effective use in various applications. This chapter presents an overview of the toxicological effects of NPs on biological systems with a particular focus on the liver, kidney, reproductive and cardiovascular systems along with mechanisms that trigger toxicity in these organs. Furthermore, the chapter discusses the various routes of exposure of NPs and their biodistribution within the body including the factors that influence their distribution and accumulation in different tissues.

Keywords
Nanoparticles, Toxicity, Nephrotoxicity, Hepatotoxicity, Reproductive Toxicity

Published online 2/10/2024, 22 pages

Citation: Muhammad Umar Ijaz, Ali Akbar, Asma Ashraf, Muhammad Saqalein, Hammad Ahmad Khan, Sumreen Hayat, Saima Muzammil, Toxicity of Nanoparticles in Biological Systems, Materials Research Foundations, Vol. 161, pp 245-266, 2024

DOI: https://doi.org/10.21741/9781644902998-9

Part of the book on Nanoparticle Toxicity and Compatibility

References
[1] Nowrouzi A, Meghrazi K, Golmohammadi T, Golestani A, Ahmadian S, Shafiezadeh M, Shajary Z, Khaghani S, Amiri AN. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure. Iranian biomedical journal 2010; 14(1-2): 23-32.
[2] De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine 2008; 3(2): 133-149. https://doi.org/10.2147/IJN.S596
[3] Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008; 4(1): 26-49. https://doi.org/10.1002/smll.200700595
[4] Farokhzad OC, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006;58(14):1456-9. https://doi.org/10.1016/j.addr.2006.09.011
[5] Roco MC. Nanotechnology: Convergence with modern biology and medicine. Curr Opin Biotechnol 2003;14(3):337-46. https://doi.org/10.1016/S0958-1669(03)00068-5
[6] Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007;18(1):26-30. doi: 10.1016/j.copbio.2007.01.006 https://doi.org/10.1016/j.copbio.2007.01.006
[7] Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol 2004;61(3):216-20. https://doi.org/10.1016/j.surneu.2003.09.036
[8] Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 2008;3(3):115-22.
[9. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-88. https://doi.org/10.1146/annurev.bioeng.9.060906.152025
[10] Rietmeijer F, Mackinnon I. Bismuth oxide nanoparticles in the stratosphere. J Geophys Res 1997;102:6621-7. https://doi.org/10.1029/96JE03989
[11] Cyrys J, Stölzel M, Heinrich J, Kreyling WG, Menzel N, Wittmaack K, Tuch T, Wichmann HE. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci Total Environ 2003;305:143-56. https://doi.org/10.1016/S0048-9697(02)00494-1
[12] Hughes LS, Cass GR, Gone J, Ames M, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ Sci Technol 1998;32:1153-61. https://doi.org/10.1021/es970280r
[13] Siegmann P, Acevedo FJ, Siegmann K, Maldonado-Bascón S. A probabilistic source attribution model for nanoparticles in air suspension applied on the main roads of Madrid and Mexico City. Atmos Environ 2008;42:3937-48. https://doi.org/10.1016/j.atmosenv.2007.05.021
[14] Beduneau A, Ma Z, Grotepas CB, Kabanov A, Rabinow BE, Gong N, Mosley RL, Dou H, Boska MD, Gendelman HE. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS One 2009;4:e4343. https://doi.org/10.1371/journal.pone.0004343
[15] Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823-39. https://doi.org/10.1289/ehp.7339
[16] Shi, Z., Shao, Longyi, 2005. Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res. 110, D01303. https://doi.org/10.1029/2004JD005073
[17] Yano, E., Yokoyama, Y., Higashi, H., Nishii, S., Maeda, K., Koizumi, A., 1990. Health effects of volcanic ash: a repeat study. Arch. Environ. Health 45, 367-373. https://doi.org/10.1080/00039896.1990.10118757
[18] Taylor, D.A., 2002. Dust in the wind. Environ. Health Perspect. 110, A80-A87. https://doi.org/10.1289/ehp.110-a80
[19] Sapkota, A., Symons, J.M., Kleissl, J., Wang, L., Parlange, M.B., Ondov, J., Breysse, P.N., Diette, G.B., Eggleston, P.A., Buckley, T.J., 2005. Impact of the 2002 Canadian Forest fires on particulate matter air quality in Baltimore City. Environ. Sci. Technol. 39, 24-32. https://doi.org/10.1021/es035311z
[20] Buzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2. https://doi.org/10.1116/1.2815690
[21] Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008;233(3):404-10. https://doi.org/10.1016/j.taap.2008.09.015
[22] Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009;185(3):211-8. https://doi.org/10.1016/j.toxlet.2009.01.008
[23] Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 2013;9(8):1159-68. https://doi.org/10.1016/j.nano.2013.04.010
[24] Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012;64(2):129-37. https://doi.org/10.1016/j.addr.2011.09.001
[25] Slivka S, Landeen L, Zeigler F, Zimber M, Bartel R (1993) Characterization, barrier function, and drug metabolism of an in vitro skin model. J Invest Dermatol 100:40-46 https://doi.org/10.1111/1523-1747.ep12354098
[26] Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631-651 https://doi.org/10.1016/S0169-409X(02)00044-3
[27] Pattan G, Kaul G (2012) Health hazards associated with nanomaterials. Toxicol Ind Health 30:499-519. https://doi.org/10.1177/0748233712459900
[28] De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008;29:1912-9. https://doi.org/10.1016/j.biomaterials.2007.12.037
[29] Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal argeting in vivo. PNAS 2002;99:12617-21 necessary. https://doi.org/10.1073/pnas.152463399
[30] Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Non-invasive imaging of quantum dots in mice. Bioconjugate Chem 2004;15:79-86. https://doi.org/10.1021/bc034153y
[31] Cagle DW, Kenmnel SJ, Mirzadeh S, Alford JM, Wilson LJ. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. PNAS 1999;96:5182-7. https://doi.org/10.1073/pnas.96.9.5182
[32] Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 2013;28:107-18. https://doi.org/10.1002/tox.20704
[33] Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B 2008;66:274-80. https://doi.org/10.1016/j.colsurfb.2008.07.004
[34] Xie G, Jiao Sun, Gaoren Zhong, Liyi Shi, Dawei Zhang. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 2010;84:183-90. https://doi.org/10.1007/s00204-009-0488-x
[35] Roy, R., Kumar, S., Tripathi, A., Das, M. and Dwivedi, P.D., 2014. Interactive threats of nanoparticles to the biological system. Immunology letters, 158(1-2), pp.79-87. https://doi.org/10.1016/j.imlet.2013.11.019
[36] Amato I. Making the right stuff. Sci News 1989;136:108-10. https://doi.org/10.2307/3973729
[37] Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009;5:1553-61. https://doi.org/10.1002/smll.200900126
[38] Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007;3:1941-9. https://doi.org/10.1002/smll.200700378
[39] Hsiao IL, Huang YJ. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 2011;409:1219-28. https://doi.org/10.1016/j.scitotenv.2010.12.033
[40] Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions Between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 2002;184:172-279. https://doi.org/10.1006/taap.2002.9501
[41] Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surfacefunctionalized nanoparticle library yields probes for apoptotic cells. ChemBioChem 2004;5:275-9. https://doi.org/10.1002/cbic.200300713
[42] Treuel L, Malissek M, Gebauer JS, Zellner R. The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem 2010;11:3093-9. https://doi.org/10.1002/cphc.201000174
[43] Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006;20:2393-5. https://doi.org/10.1096/fj.06-6485fje
[44] Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 2004;15:897-900. https://doi.org/10.1021/bc049951i
[45] Geiser, M., Schurch, S., Gehr, P., 2003. Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J. Appl. Physiol. 94, 1793-1801. https://doi.org/10.1152/japplphysiol.00514.2002
[46] Schins, R.P., Duffin, R., Höhr, D., Knaapen, A.M., Shi, T., Weishaupt, C., Stone, V., Donaldson, K., Borm, P.J., 2002. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem. Res. Toxicol. 15, 1166-1173. https://doi.org/10.1021/tx025558u
[47] Liu, Y., Li, W., Lao, F., Liu, Y., Wang, L., Bai, R., Zhao, Y., Chen, C., 2011. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32, 8291-8303. https://doi.org/10.1016/j.biomaterials.2011.07.037
[48] Hernández-Sierra, J.F., Ruiz, F., Pena, D.C., Martínez-Gutiérrez, F., Martínez, A.E., Guillén, A.D., Tapia-Pérez, H., Castañón, G.M., 2008. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4, 237-240. https://doi.org/10.1016/j.nano.2008.04.005
[49] Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S.M., Schlager, J.J., Hong, Y., 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404-410. https://doi.org/10.1016/j.taap.2008.09.015
[50] Kawata, K., Osawa, M., Okabe, S., 2009. In-vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051. https://doi.org/10.1021/es900754q
[51] El Badawy, A.M., Silva, R.G., Morris, B., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M., 2011. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 245, 283-287. https://doi.org/10.1021/es1034188
[52] Wu, F., Harper, B.J., Harper, S.L., 2017. Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: impacts of community complexity. Environ. Sci. Nano. 4, 359-372. https://doi.org/10.1039/C6EN00324A
[53] Aktera, M., Sikder, M.T., Rahman, M.M., Ullah, A.A., Hossain, K.F., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M., 2018. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1-16. https://doi.org/10.1016/j.jare.2017.10.008
[54] Zhang, T., Wang, L., Chen, Q.C., 2014. Chen Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55, 283-291. https://doi.org/10.3349/ymj.2014.55.2.283
[55] Fabrega, J., Fawcett, S.R., Renshaw, J.C., Lead, J.R., 2009. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43, 7285-7290. https://doi.org/10.1021/es803259g
[56] Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R., 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42, 8959-8964. https://doi.org/10.1021/es801785m
[57] Azmi, M.A., Shad, K.F., 2017. Role of nanostructure molecules in enhancing the bioavailability of oral drugs. In: Nanostructures for Novel Therapy. pp. 375-407. https://doi.org/10.1016/B978-0-323-46142-9.00014-1
[58] Sørensen, S.N., Engelbrekt, C., Lützhøft, H.C.H., Jiménez-Lamana, J., Noori, J.S., Alatraktchi, F.A., Delgado, C.G., Slaveykova, V.I., Baun, A., 2016. A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ. Sci. Technol. 50, 10635-10643. https://doi.org/10.1021/acs.est.6b01072
[59] Labrador-Rached, C.J., Browning, R.T., Braydich-Stolle, L.K., Comfort, K.K., 2018. Toxicological implications of platinum nanoparticle exposure: stimulation of intracellular stress, inflammatory response, and akt signaling in-vitro. J. Toxicol. 1367801. https://doi.org/10.1155/2018/1367801
[60] Konieczny, P., Goralczyk, A.G., Szmyd, R., Skalniak, L., Koziel, J., Filon, F.L., Jura, J., 2013. Effects triggered by platinum nanoparticles on primary keratinocytes. Int. J. Nanomed. 8, 3963. https://doi.org/10.2147/IJN.S49612
[61] Malugin, A., Ghandehari, H., 2010. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 30, 212-217. https://doi.org/10.1002/jat.1486
[62] De, M., Rotello, V.M., 2008. Synthetic “chaperones”: nanoparticle-mediated refolding of thermally denatured proteins. Chem. Commun. (J. Chem. Soc. Sect. D) 30, 3504-3506. https://doi.org/10.1039/b805242e
[63] Sayes, C., A. Gobin, K. Ausman, J. Mendez, J. West and V. Colvin (2005). “Nano-C-60 cytotoxicity is due to lipid peroxidation.” Biomaterials 26(36): 7587-7595. https://doi.org/10.1016/j.biomaterials.2005.05.027
[64] Deng, Z. J., G. Mortimer, T. Schiller, A. Musumeci, D. Martin and R. F. Minchin (2009). “Differential plasma protein binding to metal oxide nanoparticles.” Nanotechnology 20(45): 455101. https://doi.org/10.1088/0957-4484/20/45/455101
[65] Auffan, M., J. Rose, M. R. Wiesner and J. Y. Bottero (2009). “Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro.” Environ Pollut 157(4): 1127-1133 https://doi.org/10.1016/j.envpol.2008.10.002
[66] Saison, C., F. Perreault, J. Daigle, C. Fortin, J. Claverie, M. Morin and R. Popovic (2010). “Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.” Aquatic Toxicology 96(2): 109-114. https://doi.org/10.1016/j.aquatox.2009.10.002
[67] Hu, W., S. Culloty, G. Darmody, S. Lynch, J. Davenport, S. Ramirez-Garcia, K. Dawson, I. Lynch, J. Blasco and D. Sheehan (2014). “Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation.” Chemosphere 108: 289-299. https://doi.org/10.1016/j.chemosphere.2014.01.054
[68] Griffitt, R., R. Weil, K. Hyndman, N. Denslow, K. Powers, D. Taylor and D. Barber (2007). “Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio).” Environmental Science & Technology 41(23): 8178-8186. https://doi.org/10.1021/es071235e
[69] Gaetke, L., H. Chow-Johnson and C. Chow (2014). “Copper: toxicological relevance and mechanisms.” Archives of Toxicology 88(11): 1929-1938. https://doi.org/10.1007/s00204-014-1355-y
[70] C. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, L. Mocan, Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed. 12 (2017) 5421-5431. https://doi.org/10.2147/IJN.S138624
[71] Marissa S. Giroux, Zahra Zahra, Omobayo A. Salawu, Robert M. Burgess, K.T. Ho, A.S. Adeleye, Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure, ENVIRON SCI-NANO 9 (3) (2022) 867-910. https://doi.org/10.1039/D1EN00712B
[72] A. Goutam Mukherjee, U. Ramesh Wanjari, K. Renu, B. Vellingiri, A. Valsala Gopalakrishnan, Heavy metal and metalloid – induced reproductive toxicity, ENVIRON TOXICOL PHAR 92 (2022), 103859. https://doi.org/10.1016/j.etap.2022.103859
[73] G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, The effects of cadmium toxicity, Int. J. Environ. Res. Publ. Health 17 (11) (2020) 3782. https://doi.org/10.3390/ijerph17113782
[74] M.J. Molaei, Carbon quantum dots and their biomedical and therapeutic applications: a review, RSC Adv. 9 (12) (2019) 646-6481. https://doi.org/10.1039/C8RA08088G
[75] M. Bl’azquez S’anchez, I. Nelissen, V. Pomar-Portillo, A. Vílchez, J. Van Laer, A. Jacobs, E. Frijns, S. V’azquez-Campos, E. Fernandez-Rosas, Release and cytotoxicity screening of the printer emissions of a CdTe quantum dots-based fluorescent ink, Toxicol. Lett. 347 (2021) 1-11. https://doi.org/10.1016/j.toxlet.2021.04.009
[76] K. B’eruB’e, D. Balharry, K. Sexton, L. Koshy, T. Jones, COMBUSTION-DERIVED nanoparticles: mechanisms of pulmonary toxicity, Clin. Exp. Pharmacol. P 34 (10) (2007) 1044-1050. https://doi.org/10.1111/j.1440-1681.2007.04733.x
[77] A.K. Jigyasu, S. Siddiqui, M. Lohani, I.A. Khan, M. Arshad, Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation, EXCLI J 15 (2016) 54-63.
[78] K.G. Li, J.T. Chen, S.S. Bai, X. Wen, S.Y. Song, Q. Yu, J. Li, Y.Q. Wang, Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots, Toxicol. Vitro 23 (6) (2009) 1007-1013. https://doi.org/10.1016/j.tiv.2009.06.020
[79] J.R. Roberts, J.M. Antonini, D.W. Porter, R.S. Chapman, J.F. Scabilloni, S. H. Young, D. Schwegler-Berry, V. Castranova, R.R. Mercer, Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats, Part. Fibre Toxicol. 10 (2013) 5. https://doi.org/10.1186/1743-8977-10-5
[80] Y. Hsieh, H. Hsieh, H. Hsieh, T. Wang, C. Ho, P. Lin, C. Wang, Using laser ablation inductively coupled plasma mass spectrometry to characterize the biointeractions of inhaled CdSe quantum dots in the mouse lungs, J ANAL ATOM SPECTROM 28 (9) (2013) 1141-1396. https://doi.org/10.1039/c3ja50063b
[81] B. Chen, D. Li, F. Wang, InP quantum dots: synthesis and lighting applications, Small 16 (32) (2020), 2002454. https://doi.org/10.1002/smll.202002454
[82] G. Lin, T. Chen, Y. Pan, Z. Yang, L. Li, K. Yong, X. Wang, J. Wang, Y. Chen, W. Jiang, S. Weng, X. Huang, J. Kuang, G. Xu, Biodistribution and acute toxicity of cadmium-free quantum dots with different surface functional groups in mice following intratracheal inhalation, Nanotheranostics 4 (3) (2020) 173-183. https://doi.org/10.7150/ntno.42786
[83] de Souza, J. M., de Mendes, B. O., Guimarães, A. T. B., de Rodrigues, A. S. L., Chagas, T. Q., Rocha, T. L., & Malafaia, G. (2018). Zinc oxide nanoparticles in predicted environmentally relevant concentrations leading to behavioral impairments in male swiss mice. Science of the Total Environment, 613-614, 653-662. https://doi.org/10.1016/j.scitotenv.2017.09.051
[84] Attia, H., Nounou, H., & Shalaby, M. (2018). Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics, 6(2). https://doi.org/10.3390/toxics6020029
[85] Aijie, C., Huimin, L., Jia, L., Lingling, O., Limin, W., Junrong, W., et al. (2017). Central neurotoxicity induced by the instillation of ZnO and TiO nanoparticles through the taste nerve pathway. Nanomedicine, 12(20), 2453-2470. https://doi.org/10.2217/nnm-2017-0171
[86] Salim, S. (2017). Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics. https://doi.org/10.1124/jpet.116.237503
[87] Sayre, L. M., Perry, G., & Smith, M. A. (2008). Oxidative stress and neurotoxicity. Chemical Research in Toxicology. https://doi.org/10.1021/tx700210j
[88] Ortiz, G. G., González-Usigli, H., Pacheco-Moisés, F. P., Mireles-Ramírez, M. A., Sánchez-López, A. L., Torres-Sánchez, E. D., et al. (2017). Physiology and pathology of neuroimmunology: role of inflammation in Parkinson’s disease. In Physiology and Pathology of Immunology. https://doi.org/10.5772/intechopen.70377
[89] Attia, H., Nounou, H., & Shalaby, M. (2018). Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics, 6(2). https://doi.org/10.3390/toxics6020029
[90] Liu, H., Yang, H., Fang, Y., Li, K., Tian, L., Liu, X., et al. (2020). Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. Science of the Total Environment, 705. https://doi.org/10.1016/j.scitotenv.2019.135809
[91] Fogal, B., & Hewett, S. J. (2008). Interleukin-1β: A bridge between inflammation and excitotoxicity? Journal of Neurochemistry. https://doi.org/10.1111/j.1471-4159.2008.05315.x
[92] Giovannoni, G. (2014). Cerebrospinal fluid analysis. In Handbook of Clinical Neurology. https://doi.org/10.1016/B978-0-444-52001-2.00029-7
[93] Llorens, F., Villar-Piqué, A., Candelise, N., Ferrer, I., & Zerr, I. (2019). Tau protein as a biological fluid biomarker in neurodegenerative dementias. In Cognitive Disorders. https://doi.org/10.5772/intechopen.73528
[94] Yaqub, A., Faheem, I., Anjum, K. M., Ditta, S. A., Yousaf, M. Z., Tanvir, F., & Raza, C. (2020). Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice. Applied Nanoscience (Switzerland), 10(1), 177-185. https://doi.org/10.1007/s13204-019-01093-3
[95] Sood, K., Kaur, J., & Khatri, M. (2017). comparative neurotoxicity evaluation of zinc oxide nanoparticles by crawling assay on Drosophila melanogaster. International Journal of Engineering Technology Science and Research, 4(4), 440-444.
[96] Schaeublin, N.M., Braydich-Stolle, L.K., Schrand, A.M., Miller, J.M., Hutchison, J., Schlager, J.J., Hussain, S.M., 2011. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3, 410-420. https://doi.org/10.1039/c0nr00478b
[97] Vales, G., Suhonen, S., Siivola, K.M., Savolainen, K.M., Catalán, J., Norppa, H., 2020. Genotoxicity and cytotoxicity of gold nanoparticles in-vitro: role of surface functionalization and particle size. Nanomaterials 10, 271. https://doi.org/10.3390/nano10020271
[98. Patel, J. and Patel, A., 2015. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen. Biointeractions of Nanomaterials, 1, pp.286-306.
[99] Boey, A. and Ho, H.K., 2020. All roads lead to the liver: metal nanoparticles and their implications for liver health. Small, 16(21), p.2000153. https://doi.org/10.1002/smll.202000153
[100] Yao, Y., Zang, Y., Qu, J., Tang, M. and Zhang, T., 2019. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. International journal of nanomedicine, pp.8787-8804. https://doi.org/10.2147/IJN.S212907
[101] Pan, Y., Ong, C.E., Pung, Y.F. and Chieng, J.Y., 2019. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes-a literature-based review. Xenobiotica, 49(7), pp.863-876. https://doi.org/10.1080/00498254.2018.1503360
[102] Bartneck, M., Warzecha, K.T. and Tacke, F., 2014. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary surgery and nutrition, 3(6), p.364.
[103] Shvedova, A.A., Pietroiusti, A., Fadeel, B. and Kagan, V.E., 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and applied pharmacology, 261(2), pp.121-133. https://doi.org/10.1016/j.taap.2012.03.023
[104] Oberdörster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives, 112(10), pp.1058-1062. https://doi.org/10.1289/ehp.7021
[105] Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J. and Pérez-Lebeña, E., 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), p.4642. https://doi.org/10.3390/ijms22094642
[106] Ijaz, M.U., Mustafa, S., Batool, R., Naz, H., Ahmed, H. and Anwar, H., 2022. Ameliorative effect of herbacetin against cyclophosphamide-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Human & Experimental Toxicology, 41, p.09603271221132140. https://doi.org/10.1177/09603271221132140
[107] Sengul, A.B. and Asmatulu, E., 2020. Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters, 18, pp.1659-1683. https://doi.org/10.1007/s10311-020-01033-6
[108] Ijaz, M.U., Jabeen, F., Ashraf, A., Imran, M., Ehsan, N., Samad, A., Saleemi, M.K. and Iqbal, J., 2022. Evaluation of possible protective role of Chrysin against arsenic-induced nephrotoxicity in rats. Toxin Reviews, 41(4), pp.1237-1245. https://doi.org/10.1080/15569543.2021.1993261
[109] Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., Wang, H. and Liu, Y., 2022. Cytotoxicity of Metal‐Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. Advanced Science, 9(16), p.2106049. https://doi.org/10.1002/advs.202106049
[110] Choi, A.O.; Brown, S.E.; Szyf, M.; Maysinger, D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med. 2008, 86, 291-302. https://doi.org/10.1007/s00109-007-0274-2
[111] Singh, R.P. and Ramarao, P., 2013. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. toxicological sciences, 136(1), pp.131-143. https://doi.org/10.1093/toxsci/kft179
[112] Habas, K., Demir, E., Guo, C., Brinkworth, M.H. and Anderson, D., 2021. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metabolism Reviews, 53(4), pp.604-617. https://doi.org/10.1080/03602532.2021.1917597
[113] Ajdary, M., Keyhanfar, F., Moosavi, M.A., Shabani, R., Mehdizadeh, M. and Varma, R.S., 2021. Potential toxicity of nanoparticles on the reproductive system animal models: A review. Journal of Reproductive Immunology, 148, p.103384. https://doi.org/10.1016/j.jri.2021.103384
[114] Garcia, T.X., Costa, G.M., França, L.R. and Hofmann, M.C., 2014. Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reproductive Toxicology, 45, pp.59-70. https://doi.org/10.1016/j.reprotox.2014.01.006
[115] Schädlich A, Hoffmann S, Mueller T, et al. Accumulation of nano¬carriers in the ovary: a neglected toxicity risk? J Control Rel. 2012; 160(1):105-112. https://doi.org/10.1016/j.jconrel.2012.02.012
[116] Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanopar¬ticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of Balb/c mice. Andrologia. 2018;50(3):e12920. https://doi.org/10.1111/and.12920
[117] Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A. and Shao, L., 2018. Potential adverse effects of nanoparticles on the reproductive system. International journal of nanomedicine, 13, p.8487. https://doi.org/10.2147/IJN.S170723
[118] Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, Wang H, Jia G. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett, 2015, 239(2):123-30. https://doi.org/10.1016/j.toxlet.2015.09.013
[119] Pryskoka AO. [Study of the effect of colloidal solution of silver nanoparticles on parameters of cardio- and hemo-dynamics in rabbits]. Lik Sprava, 2014, (5-6):146-50. https://doi.org/10.31640/LS-2014-(5-6)-21
[120] Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R, Chang X, Gao X, Wang T, Jia G, Ye C, Chai Z, Zhao Y. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol, 2008, 42(23):8985-92. https://doi.org/10.1021/es800975u
[121] Bourdon JA, Saber AT, Jacobsen NR, Williams A, Vogel U, Wallin H, Halappanavar S, Yauk CL. Carbon black nanoparticle intratracheal installation does not alter cardiac gene expression. Cardiovasc Toxicol, 2013, 13(4):406-12. https://doi.org/10.1007/s12012-013-9223-1