Colon Targeted Nano Drug Delivery Systems
H. Tarannum, B.S. Nayak, A. Ojha, S. Nandi
The colon is the attractive target for the delivery of nano formulation due to distinct advantages such as near-neutral pH, longer transit time, and reduced enzymatic activity. Colon-specific drug delivery not only increases the bioavailability of the drug at the target site but also reduces the side effects and multiple dosing. In recent studies, colon-targeted drug delivery systems are gaining importance to treat local pathologies of the colon such as anorectal problems, Crohn’s disease, inflammatory bowel disease, and colonic cancer and also for the systemic delivery of protein and peptide drugs. This is because the peptide and protein drugs get destroyed or inactivated in the acidic environment of the stomach or by pancreatic enzymes in the small intestine. Various approaches such as prodrugs, pH-dependent, time-dependent and microflora-activated systems have been developed to achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract for colon-specific drug delivery. Among the different approaches, an attempt has been made to depict vital uses of polymers, specifically biodegraded by colonic bacterial enzymes holds greater promise for the colon-targeted nano drug delivery systems.
Keywords
Gastrointestinal, Nano Drug Delivery, Colon Targeting, Probiotics, Chitosan
Published online 2/10/2024, 31 pages
Citation: H. Tarannum, B.S. Nayak, A. Ojha, S. Nandi, Colon Targeted Nano Drug Delivery Systems, Materials Research Foundations, Vol. 161, pp 122-152, 2024
DOI: https://doi.org/10.21741/9781644902998-5
Part of the book on Nanoparticle Toxicity and Compatibility
References
[1] M. Ashford, J. Fell, Targeting drugs to the colon: Delivery systems for oral administration, J. Drug Target. 2 (1994) 241–257. https://doi.org/10.3109/10611869408996806.
[2] R. Kinget, W. Kalala, L. Vervoort, G. Van Den Mooter, Colonic drug targeting, J. Drug Target. 6 (1998) 129–149. https://doi.org/10.3109/10611869808997888.
[3] S.K. Bajpai, M. Bajpai, R. Dengre, Chemically treated hard gelatin capsules for colon-targeted drug delivery: A novel approach, J. Appl. Polym. Sci. 89 (2003) 2277–2282. https://doi.org/10.1002/app.12478.
[4] M.H. Irving, B. Catchpole, ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus., Bmj. 304 (1992) 1106–1108. https://doi.org/10.1136/bmj.304.6834.1106.
[5] Effect of bran on colonic targeting of a novel drug delivery system, Gastroenterology. 108 (1995) A612. https://doi.org/10.1016/0016-5085(95)26762-x.
[6] R. S, V.K. D, S.R. K, Self-Nanoemulsifying Drug Delivery System, Int. J. Pharm. Sci. Rev. Res. 79 (2023). https://doi.org/10.47583/ijpsrr.2023.v79i02.026.
[7] M. Sharadha, D. V. Gowda, N. Vishal Gupta, A.R. Akhila, An overview on topical drug delivery system – updated review, Int. J. Res. Pharm. Sci. 11 (2020) 368–385. https://doi.org/10.26452/ijrps.v11i1.1831.
[8] A.H. El-Kamel, A.A.M. Abdel-Aziz, A.J. Fatani, H.I. El-Subbagh, Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: Synthesis, in vitro and in vivo assessment, Int. J. Pharm. 358 (2008) 248–255. https://doi.org/10.1016/j.ijpharm.2008.04.021.
[9] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611.
[10] K.W. Schroeder, W.J. Tremaine, D.M. Ilstrup, Coated Oral 5-Aminosalicylic Acid Therapy for Mildly to Moderately Active Ulcerative Colitis, N. Engl. J. Med. 317 (1987) 1625–1629. https://doi.org/10.1056/nejm198712243172603.
[11] S.N. Politis, D.M. Rekkas, Recent Advances in Pulsatile Oral Drug Delivery Systems, Recent Pat. Drug Deliv. Formul. 7 (2013) 87–98. https://doi.org/10.2174/1872211311307020001.
[12] T. Bussemer, I. Otto, R. Bodmeier, Pulsatile drug-delivery systems, Crit. Rev. Ther. Drug Carrier Syst. 18 (2001) 433–458. https://doi.org/10.1615/critrevtherdrugcarriersyst.v18.i5.10.
[13] E. Fukui, N. Miyamura, K. Uemura, M. Kobayashi, Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting, Int. J. Pharm. 204 (2000) 7–15. https://doi.org/10.1016/S0378-5173(00)00454-3.
[14] L. Yang, J.S. Chu, J.A. Fix, Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation, Int. J. Pharm. 235 (2002) 1–15. https://doi.org/10.1016/S0378-5173(02)00004-2.
[15] M. Ramanathan, Formulation and Evaluation of Colon Targeted Matrix Tablets of Ibuprofen, Asian J. Pharm. Res. Dev. 6 (2018) 9–19. https://doi.org/10.22270/ajprd.v6i2.366.
[16] S. Jose, K. Dhanya, T. Cinu, J. Litty, A. Chacko, Colon targeted drug delivery: Different approaches, J. Young Pharm. 1 (2009) 13. https://doi.org/10.4103/0975-1483.51869.
[17] M.K. Chourasia, S.K. Jain, Polysaccharides for Colon Targeted Drug Delivery, Drug Deliv. J. Deliv. Target. Ther. Agents. 11 (2004) 129–148. https://doi.org/10.1080/10717540490280778.
[18] O. Carrette, C. Favier, C. Mizon, C. Neut, A. Cortot, J.F. Colombel, J. Mizon, Bacterial enzymes used for colon-specific drug delivery are decreased in active Crohn’s disease, Dig. Dis. Sci. 40 (1995) 2641–2646. https://doi.org/10.1007/BF02220454.
[19] D.R. Friend, G.W. Chang, A Colon-specific Drug-Delivery System Based on Drug Glycosides and the Glycosidases of Colonic Bacteria1, J. Med. Chem. 27 (1984) 261–266. https://doi.org/10.1021/jm00369a005.
[20] K. Minami, F. Hirayama, K. Uekama, Colon-specific drug delivery based on a cyclodextrin prodrug: Release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration, J. Pharm. Sci. 87 (1998) 715–720. https://doi.org/10.1021/js9704339.
[21] A.D. McLeod, D.R. Friend, T.N. Tozer, Synthesis and chemical stability of glucocorticoid-dextran esters: potential prodrugs for colon-specific delivery, Int. J. Pharm. 92 (1993) 105–114. https://doi.org/10.1016/0378-5173(93)90269-L.
[22] A.D. McLeod, L. Tolentino, T.N. Tozer, Glucocorticoid‐dextran conjugates as potential prodrugs for colonspecific delivery: Steady‐state pharmacokinetics in the rat, Biopharm. Drug Dispos. 15 (1994) 151–161. https://doi.org/10.1002/bdd.2510150207.
[23] B. Haeberlin, W. Rubas, H.W. Nolen, D.R. Friend, In Vitro Evaluation of Dexamethasone-β-D-Glucuronide for Colon-Specific Drug Delivery, Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10 (1993) 1553–1562. https://doi.org/10.1023/A:1018956232628.
[24] H.W. Nolen, R.N. Fedorak, D.R. Friend, Steady-state pharmacokinetics of corticosteroid delivery from glucuronide prodrugs in normal and colitic rats, Biopharm. Drug Dispos. 18 (1997) 681–695. https://doi.org/10.1002/(SICI)1099-081X(199711)18:8<681::AID-BDD56>3.0.CO;2-A.
[25] J. Nakamura, K. Asai, K. Nishida, H. Sasaki, A Novel Prodrug of Salicylic Acid, Salicylic Acid-Glutamic Acid Conjugate Utilizing Hydrolysis in Rabbit Intestinal Microorganisms, Chem. Pharm. Bull. 40 (1992) 2164–2168. https://doi.org/10.1248/cpb.40.2164.
[26] J. Nakamura, M. Kido, K. Nishida, H. Sasaki, Hydrolysis of salicylic acid-tyrosine and salicylic acid-methionine prodrugs in the rabbit, Int. J. Pharm. 87 (1992) 59–66. https://doi.org/10.1016/0378-5173(92)90227-S.
[27] R.P. Chan, D.J. Pope, A.P. Gilbert, P.J. Sacra, J.H. Baron, J.E. Lennard-Jones, Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide, Dig. Dis. Sci. 28 (1983) 609–615. https://doi.org/10.1007/BF01299921.
[28] C.P. Willoughby, J.K. Aronson, H. Agback, N.O. Bodin, S.C. Truelove, Distribution and metabolism in healthy volunteers of disodium azodisalicylate, a potential therapeutic agent for ulcerative colitis, Gut. 23 (1982) 1081–1087. https://doi.org/10.1136/gut.23.12.1081.
[29] D.R. Swanson, B.L. Barclay, P.S.L. Wong, F. Theeuwes, Nifedipine gastrointestinal therapeutic system, Am. J. Med. 83 (1987) 3–9. https://doi.org/10.1016/0002-9343(87)90629-2.
[30] E. Schacht, A. Gevaert, E.R. Kenawy, K. Molly, W. Verstraete, P. Adriaensens, R. Carleer, J. Gelan, Polymers for colon specific drug delivery, J. Control. Release. 39 (1996) 327–338. https://doi.org/10.1016/0168-3659(95)00184-0.
[31] V.R. Sinha, R. Kumria, Polysaccharides in colon-specific drug delivery, Int. J. Pharm. 224 (2001) 19–38. https://doi.org/10.1016/S0378-5173(01)00720-7.
[32] V.R. Sinha, R. Kumria, Binders for colon specific drug delivery: An in vitro evaluation, Int. J. Pharm. 249 (2002) 23–31. https://doi.org/10.1016/S0378-5173(02)00398-8.
[33] O.A. Cavalcanti, G. Van Den Mooter, I. Caramico-Soares, R. Kinget, Polysaccharides as excipients for colon-specific coatings. Permeability and swelling properties of casted films, Drug Dev. Ind. Pharm. 28 (2002) 157–164. https://doi.org/10.1081/DDC-120002449.
[34] H. Rajpurohit, P. Sharma, S. Sharma, A. Bhandari, Polymers for colon targeted drug delivery, Indian J. Pharm. Sci. 72 (2010) 689–696. https://doi.org/10.4103/0250-474X.84576.
[35] Y.V.R. Prasad, Y.S.R. Krishnaiah, S. Satyanarayana, In vitro evaluation of guar gum as a carder for colon-specific drug delivery, J. Control. Release. 51 (1998) 281–287. https://doi.org/10.1016/S0168-3659(97)00181-8.
[36] D. Wong, S. Larrabee, K. Clifford, J. Tremblay, D.R. Friend, USP dissolution apparatus III (reciprocating cylinder) for screening of guar-based colonic delivery formulations, J. Control. Release. 47 (1997) 173–179. https://doi.org/10.1016/S0168-3659(97)01633-7.
[37] Y.S.R. Krishnaiah, P. Veer Raju, B. Dinesh Kumar, V. Satyanarayana, R.S. Karthikeyan, P. Bhaskar, Pharmacokinetic evaluation of guar gum-based colon-targeted drug delivery systems of mebendazole in healthy volunteers, J. Control. Release. 88 (2003) 95–103. https://doi.org/10.1016/S0168-3659(02)00483-2.
[38] Y.S.R. Krishnaiah, S. Satyanarayana, Y. V. Rama Prasad, Studies of guar gum compression-coated 5-aminosalicylic acid tablets for colon-specific drug delivery, Drug Dev. Ind. Pharm. 25 (1999) 651–657. https://doi.org/10.1081/DDC-100102221.
[39] A. Rubinstein, R. Radai, M. Ezra, S. Pathak, J.S. Rokem, In Vitro Evaluation of Calcium Pectinate: A Potential Colon-Specific Drug Delivery Carrier, Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10 (1993) 258–263. https://doi.org/10.1023/A:1018995029167.
[40] G. Dupuis, O. Chambin, C. Génelot, D. Champion, Y. Pourcelot, Colonic drug delivery: Influence of cross-linking agent on pectin beads properties and role of the shell capsule type, Drug Dev. Ind. Pharm. 32 (2006) 847–855. https://doi.org/10.1080/03639040500536718.
[41] A. Rubinstein, D. Nakar, A. Sintov, Chondroitin sulfate: A potential biodegradable carrier for colon-specific drug delivery, Int. J. Pharm. 84 (1992) 141–150. https://doi.org/10.1016/0378-5173(92)90054-6.
[42] A. Rubinstein, D. Nakar, A. Sintov, Colonic drug delivery: Enhanced release of indomethacin from cross-linked chondroitin matrix in rat cecal content, Pharm. Res. 9 (1992) 276–278. https://doi.org/10.1023/a:1018910128452.
[43] E. Harboe, C. Larsen, M. Johansen, H.P. Olesen, Macromolecular prodrugs. XIV. Absorption characteristics of naproxen after oral administration of a dextran T-70-naproxen ester prodrug in pigs, Int. J. Pharm. 53 (1989) 157–165. https://doi.org/10.1016/0378-5173(89)90239-1.
[44] A.D. McLeod, R.N. Fedorak, D.R. Friend, T.N. Tozer, N. Cui, A glucocorticoid prodrug facilitates normal mucosal function in rat colitis without adrenal suppression, Gastroenterology. 106 (1994) 405–413. https://doi.org/10.1016/0016-5085(94)90599-1.
[45] L. Gautam, S.K. Prajapati, P. Shrivastava, S.P. Vyas, Bioinspired and biomimetic conjugated drug delivery system(s): A biohybrid concept combining cell(s) and drug delivery carrier(s), Smart Polym. Nano-Constructs Drug Deliv. (2023) 465–483. https://doi.org/10.1016/b978-0-323-91248-8.00009-x.
[46] A.D. McLeod, D.R. Friend, T.N. Tozer, Glucocorticoid–dextran conjugates as potential prodrugs for colon‐specific delivery: Hydrolysis in rat gastrointestinal tract contents, J. Pharm. Sci. 83 (1994) 1284–1288. https://doi.org/10.1002/jps.2600830919.
[47] V.J. Stella, R.A. Rajewski, Cyclodextrins: Their future in drug formulation and delivery, Pharm. Res. 14 (1997) 556–567. https://doi.org/10.1023/A:1012136608249.
[48] J. Thibault, J. Fockedey, P. Dysseler, B. Quemener, P. Coussement, D. Hoffem, Determination of Inulin and Oligofructose in Food Products ( Modified AOAC Dietary Fiber Method), Complex Carbohydrates in Foods. (1999). https://doi.org/10.1201/9780203909577.ch17.
[49] L. Vervoort, R. Kinget, In vitro degradation by colonic bacteria of inulinHP incorporated in Eudragit RS films, Int. J. Pharm. 129 (1996) 185–190. https://doi.org/10.1016/0378-5173(95)04322-5.
[50] J.H. Cummings, S. Milojevic, M. Harding, W.A. Coward, G.R. Gibson, R.L. Botham, S.G. Ring, E.P. Wraight, M.A. Stockham, M.C. Allwood, J.M. Newton, In vivo studies of amylose-and ethylcellulose-coated [13C]glucose microspheres as a model for drug delivery to the colon, J. Control. Release. 40 (1996) 123–131. https://doi.org/10.1016/0168-3659(95)00186-7.
[51] M. Ojha, N.S. Madhav, A. Singh, Synthesis and evaluation of sodium carboxymethyl cellulose azo polymer for colon specificity, Int. Curr. Pharm. J. 1 (2012) 209–212. https://doi.org/10.3329/icpj.v1i8.11252.
[52] M. Ojha, N.S. Madhav, A. Singh, Synthesis and evaluation of sodium carboxymethyl cellulose azo polymer for colon specificity, Int. Curr. Pharm. J. 1 (2012) 209–212. https://doi.org/10.3329/icpj.v1i8.11252.
[53] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710.
[54] P. Markowiak, K. Ślizewska, The role of probiotics, prebiotics and synbiotics in animal nutrition, Gut Pathog. 10 (2018). https://doi.org/10.1186/s13099-018-0250-0.
[55] S. Nandi, S. Ahmed, A. Saxena, A.K. Saxena, Exploring the Pathoprofiles of SARS-COV-2 Infected Human Gut–Lungs Microbiome Crosstalks, Probiotics, Prebiotics, Synbiotics, and Postbiotics. (2023) 217–235. https://doi.org/10.1007/978-981-99-1463-0_12.
[56] S. Hua, E. Marks, J.J. Schneider, S. Keely, Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue, Nanomedicine Nanotechnology, Biol. Med. 11 (2015) 1117–1132. https://doi.org/10.1016/j.nano.2015.02.018.
[57] D. Ganguly, A. Choudhury, S. Majumdar, Nanotechnology Approaches for Colon Targeted Drug Delivery System: A Review, J. Young Pharm. 15 (2023) 233–238. https://doi.org/10.5530/jyp.2023.15.32.
[58] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021.
[59] A. Imanparast, L. Hamzehzadeh, A. Pasdar, New Approaches to Colorectal Cancer Treatment; An Overview, Cancer Press. 2 (2016) 36. https://doi.org/10.15562/tcp.25.
[60] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743.
[61] S. Kaur, R.K. Narang, G. Aggarwal, Formulation and development of colon-targeted mucopenetrating metronidazole nanoparticles, Trop. J. Pharm. Res. 16 (2017) 967–973. https://doi.org/10.4314/tjpr.v16i5.1.
[62] M. Kumar, U. Kumar, A.K. Singh, Therapeutic Nanoparticles: Recent Developments and Their Targeted Delivery Applications, Nano Biomed. Eng. 14 (2022) 38–52. https://doi.org/10.5101/nbe.v14i1.p38-52.
[63] H. Choukaife, S. Seyam, B. Alallam, A.A. Doolaanea, M. Alfatama, Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment, Int. J. Nanomedicine. 17 (2022) 3933–3966. https://doi.org/10.2147/IJN.S375229.
[64] I.M. Ibrahim, Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead, Cureus. (2023). https://doi.org/10.7759/cureus.33636.
[65] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095.
[66] B.A. Cisterna, N. Kamaly, W. Il Choi, A. Tavakkoli, O.C. Farokhzad, C. Vilos, Targeted nanoparticles for colorectal cancer, Nanomedicine. 11 (2016) 2443–2456. https://doi.org/10.2217/nnm-2016-0194.
[67] K.E. Wong, S.C. Ngai, K.G. Chan, L.H. Lee, B.H. Goh, L.H. Chuah, Curcumin nanoformulations for colorectal cancer: A review, Front. Pharmacol. 10 (2019). https://doi.org/10.3389/fphar.2019.00152.
[68] A. Saraf, N. Dubey, N. Dubey, M. Sharma, Curcumin loaded eudragit s100/plga nanoparticles in treatment of colon cancer: Formulation, optimization, and in-vitro cytotoxicity study, Indian J. Pharm. Educ. Res. 55 (2021) S428–S440. https://doi.org/10.5530/ijper.55.2s.114.
[69] C. Gao, S. Yu, X. Zhang, Y. Dang, D.D. Han, X. Liu, J. Han, M. Hui, Dual functional eudragit® s100/l30d-55 and plga colon-targeted nanoparticles of iridoid glycoside for improved treatment of induced ulcerative colitis, Int. J. Nanomedicine. 16 (2021) 1405–1422. https://doi.org/10.2147/IJN.S291090.
[70] A.E.B. Yassin, M.D. Khalid Anwer, H.A. Mowafy, I.M. El-Bagory, M.A. Bayomi, I.A. Alsarra, Optimization of 5-fluorouracil solid-lipid nanoparticles: A preliminary study to treat colon cancer, Int. J. Med. Sci. 7 (2010) 398–408. https://doi.org/10.7150/ijms.7.398.
[71] B. Ibrahim, O.Y. Mady, M.M. Tambuwala, Y.A. Haggag, PH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer, Nanomedicine. 17 (2022) 367–381. https://doi.org/10.2217/nnm-2021-0423.
[72] G. V. Shinde, G.S. Bangale, D.G. Umalkar, K.S. Rajesh, ChemInform Abstract: Supercritical Fluids: A Potential Approach for Novel Drug Formulation, ChemInform. 42 (2011) no-no. https://doi.org/10.1002/chin.201126263.
[73] S. Narade, Y. Pore, Optimization of ex vivo permeability characteristics of berberine in presence of quercetin using 3 2 full factorial design, J. Appl. Pharm. Sci. 9 (2019) 73–82. https://doi.org/10.7324/JAPS.2019.90111.
[74] H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto, S. Muranishi, Chitosan Capsule for colon-specific drug delivery: Improvement of insulin absorption from the rat colon, J. Pharm. Sci. 86 (1997) 1016–1021. https://doi.org/10.1021/js970018g.
[75] S. Kaur, R.K. Narang, G. Aggarwal, Formulation and development of colon-targeted mucopenetrating metronidazole nanoparticles, Trop. J. Pharm. Res. 16 (2017) 967–973. https://doi.org/10.4314/tjpr.v16i5.1.