Future Directions in Nanomaterials Research for Biological Applications

$30.00

Future Directions in Nanomaterials Research for Biological Applications

Rahul Das, Manab Deb Adhikari, Pratap Singh Chauhan

Nowadays, nanomaterial-based technologies have reached a great height from the application point of view. However, this chapter is mainly focused on nanomaterials research for biological applications and its future directions. Depending on the shape, size and elemental composition, nanomaterials are capable of exhibiting some unique and remarkable functional properties. Due to such functional properties, nanomaterials have attracted much attention for biomedical applications and are being tested for easier treatment and diagnosis without any side effects. This chapter not only provides the expected biological applications of nanomaterials but also points out some information starting from key properties of biologically applicable nanomaterials to characterization through fabrication processes.

Keywords
Nanomaterials, Nanofabrications, Biological Applications, Diagnostic Tools, Drug Delivery, Tissue Engineering, Nanorobots

Published online 2/10/2024, 26 pages

Citation: Rahul Das, Manab Deb Adhikari, Pratap Singh Chauhan, Future Directions in Nanomaterials Research for Biological Applications, Materials Research Foundations, Vol. 161, pp 1-26, 2024

DOI: https://doi.org/10.21741/9781644902998-1

Part of the book on Nanoparticle Toxicity and Compatibility

References
[1] A.P. Ramos, M.A.E. Cruz, C.B. Tovani, P. Ciancaglini, Biomedical applications of nanotechnology, Biophys. Rev. 9 (2017) 79–89. https://doi.org/10.1007/s12551-016-0246-2.
[2] E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev. 38 (2009) 1759–1782. https://doi.org/10.1039/b806051g
[3] Q.A. Pankhurst, N.K.T. Thanh, S.K. Jones, J. Dobson, Progress in applications of magnetic nanoparticles in biomedicine, J. Phys. D. Appl. Phys. 42 (2009) 224001. https://doi.org/10.1088/0022-3727/42/22/224001
[4] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots, Biomaterials. 28 (2007) 4717–4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
[5] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D. Appl. Phys. 36 (2003) R167–R181. https://doi.org/10.1088/0022-3727/36/13/201
[6] R. Kramer, D. Cohen, Functional genomics to new drug targets, Nat. Rev. Drug Discov. 3 (2004) 965–972. https://doi.org/10.1038/nrd1552.
[7] Y. Chen, H. Cong, Y. Shen, B. Yu, Biomedical application of manganese dioxide nanomaterials, Nanotechnology. 31 (2020) 202001. https://doi.org/10.1088/1361-6528/ab6fe1
[8] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021
[9] P. Podsiadlo, S. Paternel, J.M. Rouillard, Z. Zhang, J. Lee, J.W. Lee, E. Gulari, N.A. Kotov, Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties, AIChE Annu. Meet. Conf. Proc. 21 (2005) 5198–5210. https://doi.org/10.1021/la051284+
[10] S. Murthy, P. Effiong, C.C. Fei, Metal oxide nanoparticles in biomedical applications, Met. Oxide Powder Technol. Fundam. Process. Methods Appl. (2020) 233–251. https://doi.org/10.1016/B978-0-12-817505-7.00011-7.
[11] D. Ung, L.D. Tung, G. Caruntu, D. Delaportas, I. Alexandrou, I.A. Prior, N.T.K. Thanh, Variant shape growth of nanoparticles of metallic Fe-Pt, Fe-Pd and Fe-Pt-Pd alloys, CrystEngComm. 11 (2009) 1309–1316. https://doi.org/10.1039/b823290n
[12] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots, Biomaterials. 28 (2007) 4717–4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
[13] J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek, Quantum dots – characterization, preparation and usage in biological systems, Int. J. Mol. Sci. 10 (2009) 656–673. https://doi.org/10.3390/ijms10020656
[14] A.L. Rogach, A. Eychmüller, S.G. Hickey, S. V. Kershaw, Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications, Small. 3 (2007) 536–557. https://doi.org/10.1002/smll.200600625
[15] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611
[16] A.G. Roca, R. Costo, A.F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreño, M.P. Morales, C.J. Serna, Progress in the preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys. 42 (2009) 224002. https://doi.org/10.1088/0022-3727/42/22/224002
[17] N.T.K. Thanh, L.A.W. Green, Functionalisation of nanoparticles for biomedical applications, Nano Today. 5 (2010) 213–230. https://doi.org/10.1016/j.nantod.2010.05.003
[18] Scientific and Clinical Applications of Magnetic Carriers, Sci. Clin. Appl. Magn. Carriers. (1997). https://doi.org/10.1007/978-1-4757-6482-6
[19] M. Chen, D.E. Nikles, Synthesis of spherical FePd and CoPt nanoparticles, J. Appl. Phys. 91 (2002) 8477–8479. https://doi.org/10.1063/1.1456406
[20] R. Shanmuganathan, I. Karuppusamy, M. Saravanan, H. Muthukumar, K. Ponnuchamy, V.S. Ramkumar, A. Pugazhendhi, Synthesis of Silver Nanoparticles and their Biomedical Applications – A Comprehensive Review, Curr. Pharm. Des. 25 (2019) 2650–2660. https://doi.org/10.2174/1381612825666190708185506
[21] I. Rezić, Nanoparticles for Biomedical Application and Their Synthesis, Polymers (Basel). 14 (2022) 4961. https://doi.org/10.3390/polym14224961
[22] C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 789–808. https://doi.org/10.1016/j.addr.2011.03.008
[23] A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2 (2010) 544–568. https://doi.org/10.1002/wnan.103
[24] M.I. Anik, N. Mahmud, A. Al Masud, M. Hasan, Gold nanoparticles (GNPs) in biomedical and clinical applications: A review, Nano Sel. 3 (2022) 792–828. https://doi.org/10.1002/nano.202100255
[25] L. S Jairam, A. Chandrashekar, T.N. Prabhu, S.B. Kotha, M.S. Girish, I.M. Devraj, M. Dhanya Shri, K. Prashantha, A review on biomedical and dental applications of cerium oxide nanoparticles ― Unearthing the potential of this rare earth metal, J. Rare Earths. 41 (2023) 1645–1661. https://doi.org/10.1016/j.jre.2023.04.009
[26] S. Pantic, S.R. Skodric, Z. Loncar, I. Pantic, Zinc oxide nanoparticles: Potential novel applications in cellular physiology, pathology, neurosciences and cancer research, Rev. Adv. Mater. Sci. 58 (2019) 17–21. https://doi.org/10.1515/rams-2019-0002
[27] S. Jha, R. Rani, S. Singh, Biogenic Zinc Oxide Nanoparticles and Their Biomedical Applications: A Review, J. Inorg. Organomet. Polym. Mater. 33 (2023) 1437–1452. https://doi.org/10.1007/s10904-023-02550-x
[28] A. Esmaeilnejad, P. Mahmoudi, A. Zamanian, M. Mozafari, Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications, Ceram. Int. 45 (2019) 19275–19282. https://doi.org/10.1016/j.ceramint.2019.06.177
[29] S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi, Biomedical applications of TiO2 nanostructures: Recent advances, Int. J. Nanomedicine. 15 (2020) 3447–3470. https://doi.org/10.2147/IJN.S249441
[30] S. Khan, A.A. Ansari, A. Malik, A.A. Chaudhary, J.B. Syed, A.A. Khan, Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines, J. Trace Elem. Med. Biol. 52 (2019) 12–17. https://doi.org/10.1016/j.jtemb.2018.11.003
[31] N. Behera, M. Arakha, M. Priyadarshinee, B.S. Pattanayak, S. Soren, S. Jha, B.C. Mallick, Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death, RSC Adv. 9 (2019) 24888–24894. https://doi.org/10.1039/c9ra02082a
[32] S. Naz, A. Gul, M. Zia, R. Javed, Synthesis, biomedical applications, and toxicity of CuO nanoparticles, Appl. Microbiol. Biotechnol. 107 (2023) 1039–1061. https://doi.org/10.1007/s00253-023-12364-z
[33] P. Paramita, V.D. Subramaniam, R. Murugesan, M. Gopinath, I. Ramachandran, S. Ramalingam, X.F. Sun, A. Banerjee, F. Marotta, S. Pathak, Evaluation of potential anti-cancer activity of cationic liposomal nanoformulated Lycopodium clavatum in colon cancer cells, IET Nanobiotechnology. 12 (2018) 727–732. https://doi.org/10.1049/iet-nbt.2017.0106
[34] T. Sabah, K.H. Jawad, N. Al-attar, Synthesis and Biomedical Activity of Aluminium Oxide Nanoparticles by Laser Ablation Technique, Res. J. Pharm. Technol. 16 (2023) 1267–1273. https://doi.org/10.52711/0974-360X.2023.00209
[35] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C. 44 (2014) 278–284. https://doi.org/10.1016/j.msec.2014.08.031
[36] M. Kumari, B. Sarkar, K. Mukherjee, Nanoscale calcium oxide and its biomedical applications: A comprehensive review, Biocatal. Agric. Biotechnol. 47 (2023) 102506. https://doi.org/10.1016/j.bcab.2022.102506
[37] S. Abinaya, H.P. Kavitha, Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents, ACS Omega. 8 (2023) 5225–5233. https://doi.org/10.1021/acsomega.2c01450
[38] K. Szostak, P. Ostaszewski, J. Pulit-Prociak, M. Banach, Bismuth Oxide Nanoparticles in Drug Delivery Systems, Pharm. Chem. J. 53 (2019) 48–51. https://doi.org/10.1007/s11094-019-01954-9
[39] M.A. Shahbazi, L. Faghfouri, M.P.A. Ferreira, P. Figueiredo, H. Maleki, F. Sefat, J. Hirvonen, H.A. Santos, The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties, Chem. Soc. Rev. 49 (2020) 1253–1321. https://doi.org/10.1039/c9cs00283a
[40] M. Wu, P. Hou, L. Dong, L. Cai, Z. Chen, M. Zhao, J. Li, Manganese dioxide nanosheets: From preparation to biomedical applications, Int. J. Nanomedicine. 14 (2019) 4781–4800. https://doi.org/10.2147/IJN.S207666
[41] D.F. Williams, A model for biocompatibility and its evaluation, J. Biomed. Eng. 11 (1989) 185–191. https://doi.org/10.1016/0141-5425(89)90138-6
[42] M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials, Nat. Nanotechnol. 2 (2007) 469–478. https://doi.org/10.1038/nnano.2007.223
[43] M. Huston, M. Debella, M. Dibella, A. Gupta, Green synthesis of nanomaterials, Nanomaterials. 11 (2021) 2130. https://doi.org/10.3390/nano11082130
[44] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng. 2021 (2021) 1–21. https://doi.org/10.1155/2021/5102014
[45] C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview, RSC Adv. 5 (2015) 105003–105037. https://doi.org/10.1039/c5ra19388e
[46] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of “sol-gel” chemistry as a technique for materials synthesis, Mater. Horizons. 3 (2016) 91–112. https://doi.org/10.1039/c5mh00260e
[47] S. Barman, S. Sikdar, A. Biswas, B.K. Mandal, R. Das, Structural microanalysis of green synthesized AlxZn(1-x)O nanoparticles, Nano Express. 1 (2020) 20003. https://doi.org/10.1088/2632-959X/ab9f54
[48] Y. Huang, C.Y. Haw, Z. Zheng, J. Kang, J.C. Zheng, H.Q. Wang, Biosynthesis of Zinc Oxide Nanomaterials from Plant Extracts and Future Green Prospects: A Topical Review, Adv. Sustain. Syst. 5 (2021). https://doi.org/10.1002/adsu.202000266
[49] S. Barman, S. Sikdar, A. Biswas, A. Islam, R. Das, Green synthesis of MnxZn(1-x)O nanostructure using Azadirachta indica leaf extract and its microstructural and optical study, Phys. Scr. 97 (2022) 45002. https://doi.org/10.1088/1402-4896/ac520c
[50] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743
[51] S. Barman, S. Sikdar, R. Das, A comprehensive study on ZrO2-ZnO nanocomposites synthesized by the plant-mediated green method, Phys. Scr. 98 (2023) 85947. https://doi.org/10.1088/1402-4896/ace857
[52] B. Shkodra-Pula, A. Vollrath, U.S. Schubert, S. Schubert, Polymer-based nanoparticles for biomedical applications, Front. Nanosci. 16 (2020) 233–252. https://doi.org/10.1016/B978-0-08-102828-5.00009-7
[53] M. Ovais, I. Ahmad, A.T. Khalil, S. Mukherjee, R. Javed, M. Ayaz, A. Raza, Z.K. Shinwari, Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects, Appl. Microbiol. Biotechnol. 102 (2018) 4305–4318. https://doi.org/10.1007/s00253-018-8939-z
[54] A.A.A. Aljabali, Y. Akkam, M.S. Al Zoubi, K.M. Al-Batayneh, B. Al-Trad, O.A. Alrob, A.M. Alkilany, M. Benamara, D.J. Evans, Synthesis of gold nanoparticles using leaf extract of ziziphus zizyphus and their antimicrobial activity, Nanomaterials. 8 (2018) 174. https://doi.org/10.3390/nano8030174
[55] B.K. Mandal, R. Mandal, S. Sikdar, S. Sarma, A. Srinivasan, S.R. Chowdhury, B. Das, R. Das, Green synthesis of NiO nanoparticle using Punica granatum peel extract and its characterization for methyl orange degradation, Mater. Today Commun. 34 (2023) 105302. https://doi.org/10.1016/j.mtcomm.2022.105302
[56] S.A. Razack, A. Suresh, S. Sriram, G. Ramakrishnan, S. Sadanandham, M. Veerasamy, R.B. Nagalamadaka, R. Sahadevan, Green synthesis of iron oxide nanoparticles using Hibiscus rosa-sinensis for fortifying wheat biscuits, SN Appl. Sci. 2 (2020). https://doi.org/10.1007/s42452-020-2477-x
[57] S.C. Mali, A. Dhaka, C.K. Githala, R. Trivedi, Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties, Biotechnol. Reports. 27 (2020) e00518. https://doi.org/10.1016/j.btre.2020.e00518
[58] Hemlata, P.R. Meena, A.P. Singh, K.K. Tejavath, Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines, ACS Omega. 5 (2020) 5520–5528. https://doi.org/10.1021/acsomega.0c00155
[59] M. Naseer, U. Aslam, B. Khalid, B. Chen, Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential, Sci. Rep. 10 (2020). https://doi.org/10.1038/s41598-020-65949-3
[60] S.E. Sandler, B. Fellows, O. Thompson Mefford, Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications, Anal. Chem. 91 (2019) 14159–14169. https://doi.org/10.1021/acs.analchem.9b03518
[61] I. Rezić, Nanoparticles for Biomedical Application and Their Synthesis, Polymers (Basel). 14 (2022) 4961. https://doi.org/10.3390/polym14224961
[62] M. Mabrouk, D.B. Das, Z.A. Salem, H.H. Beherei, Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties, Molecules. 26 (2021) 1077. https://doi.org/10.3390/molecules26041077
[63] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710
[64] Z. Cai, Z. Ye, X. Yang, Y. Chang, H. Wang, Y. Liu, A. Cao, Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging, Nanoscale. 3 (2011) 1974–1976. https://doi.org/10.1039/c0nr00956c
[65] B.K. Mandal, R. Mandal, D. Limbu, M.D. Adhikari, P.S. Chauhan, R. Das, Green synthesis of AgCl nanoparticles using Calotropis gigantea: Characterization and their enhanced antibacterial activities, Chem. Phys. Lett. 801 (2022) 139699. https://doi.org/10.1016/j.cplett.2022.139699
[66] R. Weissleder, Scaling down imaging: Molecular mapping of cancer in mice, Nat. Rev. Cancer. 2 (2002) 11–18. https://doi.org/10.1038/nrc701
[67] S. Flacke, S. Fischer, M.J. Scott, R.J. Fuhrhop, J.S. Allen, M. McLean, P. Winter, G.A. Sicard, P.J. Gaffney, S.A. Wickline, G.M. Lanza, Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques, Circulation. 104 (2001) 1280–1285. https://doi.org/10.1161/hc3601.094303
[68] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095
[69] N. Arndt, H.D.N. Tran, R. Zhang, Z.P. Xu, H.T. Ta, Different Approaches to Develop Nanosensors for Diagnosis of Diseases, Adv. Sci. 7 (2020). https://doi.org/10.1002/advs.202001476
[70] L. Helm, Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications, Future Med. Chem. 2 (2010) 385–396. https://doi.org/10.4155/fmc.09.174
[71] J.A. Park, J.J. Lee, J.C. Jung, D.Y. Yu, C. Oh, S. Ha, T.J. Kim, Y. Chang, Gd-DOTA conjugate of RGD as a potential tumor-targeting MRI contrast agent., Chembiochem. 9 (2008) 2811–2813. https://doi.org/10.1002/cbic.200800529
[72] W.L. Zhang, D.W. Yong, J. Huang, J.H. Yu, S.Y. Liu, M.X. Fan, Fabrication of polymer-gadolinium (III) complex nanomicelle from poly(ethylene glycol)-polysuccinimide conjugate and diethylenetriaminetetraacetic acid-gadolinium as magnetic resonance imaging contrast agents, J. Appl. Polym. Sci. 120 (2011) 2596–2605. https://doi.org/10.1002/app.33464
[73] L.S. Karfeld-Sulzer, E.A. Waters, N.E. Davis, T.J. Meade, A.E. Barron, Multivalent protein polymer mri contrast agents: Controlling relaxivity via modulation of amino acid sequence, Biomacromolecules. 11 (2010) 1429–1436. https://doi.org/10.1021/bm901378a
[74] N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging, Int. J. Mol. Sci. 11 (2010) 1759–1776. https://doi.org/10.3390/ijms11041759
[75] H. Bin Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Adv. Mater. 21 (2009) 2133–2148. https://doi.org/10.1002/adma.200802366
[76] Y.Z. Shao, L.Z. Liu, S.Q. Song, R.H. Cao, H. Liu, C.Y. Cui, X. Li, M.J. Bie, L. Li, A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent, Contrast Media Mol. Imaging. 6 (2011) 110–118. https://doi.org/10.1002/cmmi.412
[77] L. Nie, F. Liu, P. Ma, X. Xiao, Applications of gold nanoparticles in optical biosensors, J. Biomed. Nanotechnol. 10 (2014) 2700–2721. https://doi.org/10.1166/jbn.2014.1987
[78] H. Daraee, A. Eatemadi, E. Abbasi, S.F. Aval, M. Kouhi, A. Akbarzadeh, Application of gold nanoparticles in biomedical and drug delivery, Artif. Cells, Nanomedicine Biotechnol. 44 (2016) 410–422. https://doi.org/10.3109/21691401.2014.955107
[79] L.E. Cole, R.D. Ross, J.M. Tilley, T. Vargo-Gogola, R.K. Roeder, Gold nanoparticles as contrast agents in X-ray imaging and computed tomography, Nanomedicine. 10 (2015) 321–341. https://doi.org/10.2217/nnm.14.171
[80] D. Lombardo, M.A. Kiselev, M.T. Caccamo, Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine, J. Nanomater. 2019 (2019) 1–26. https://doi.org/10.1155/2019/3702518
[81] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharm. Res. 33 (2016) 2373–2387. https://doi.org/10.1007/s11095-016-1958-5
[82] R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications, J. Mater. Chem. 19 (2009) 6274–6293. https://doi.org/10.1039/b902394a
[83] A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
[84] J. Mürbe, A. Rechtenbach, J. Töpfer, Synthesis and physical characterization of magnetite nanoparticles for biomedical applications, Mater. Chem. Phys. 110 (2008) 426–433. https://doi.org/10.1016/j.matchemphys.2008.02.037
[85] C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Adv. Drug Deliv. Rev. 60 (2008) 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
[86] J. Hong, P. Gong, D. Xu, H. Sun, S. Yao, Synthesis and characterization of carboxyl-functionalized magnetic nanogel via “Green” photochemical method, J. Appl. Polym. Sci. 105 (2007) 1882–1887. https://doi.org/10.1002/app.25655
[87] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (2005) 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
[88] J. Pan, Y. Wang, S.S. Feng, Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(Lactide)-Vitamin E TPGS nanoparticles for cellular and molecular imaging, Biotechnol. Bioeng. 101 (2008) 622–633. https://doi.org/10.1002/bit.21924
[89] L. Yang, H. Mao, Y. Andrew Wang, Z. Cao, X. Peng, X. Wang, H. Duan, C. Ni, Q. Yuan, G. Adams, M.Q. Smith, W.C. Wood, X. Gao, S. Nie, Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging, Small. 5 (2009) 235–243. https://doi.org/10.1002/smll.200800714
[90] B. Ballou, L. Ernst, A. Waggoner, Fluorescence Imaging of Tumors In Vivo, Curr. Med. Chem. 12 (2005) 795–805. https://doi.org/10.2174/0929867053507324
[91] B. Ballou, L.A. Ernst, S. Andreko, T. Harper, J.A.J. Fitzpatrick, A.S. Waggoner, M.P. Bruchez, Sentinel lymph node imaging using quantum dots in mouse tumor models, Bioconjug. Chem. 18 (2007) 389–396. https://doi.org/10.1021/bc060261j
[92] P. Wunderbaldinger, L. Josephson, C. Bremer, A. Moore, R. Weissleder, Detection of lymph node metastases by contrast-enhanced MRI in an experimental model, Magn. Reson. Med. 47 (2002) 292–297. https://doi.org/10.1002/mrm.10068
[93] O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder, An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118–122. https://doi.org/10.1038/nmat1571
[94] M.A. Hahn, A.K. Singh, P. Sharma, S.C. Brown, B.M. Moudgil, Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives, Anal. Bioanal. Chem. 399 (2011) 3–27. https://doi.org/10.1007/s00216-010-4207-5
[95] D.B. Elrod, R. Partha, D. Danila, S.W. Casscells, J.L. Conyers, An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid, Nanomedicine Nanotechnology, Biol. Med. 5 (2009) 42–45. https://doi.org/10.1016/j.nano.2008.06.007
[96] S. Kweon, H.J. Lee, W.J. Hyung, J. Suh, J.S. Lim, S.J. Lim, Liposomes coloaded with iopamidol/lipiodol as a res-targeted contrast agent for computed tomography imaging, Pharm. Res. 27 (2010) 1408–1415. https://doi.org/10.1007/s11095-010-0135-5
[97] J. Zheng, C. Allen, S. Serra, D. Vines, M. Charrong, D.A. Jaffray, Liposome contrast agent for CT-based detection and localization of neoplastic and inflammatory lesions in rabbits: Validation with FDG-PET and histology, Contrast Media Mol. Imaging. 5 (2010) 147–154. https://doi.org/10.1002/cmmi.378
[98] A. Chrastina, J.E. Schnitzer, Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging, Int. J. Nanomedicine. 5 (2010) 653–659. https://doi.org/10.2147/IJN.S11677
[99] J.L. Van Herck, G.R.Y. De Meyer, W. Martinet, R.A. Salgado, B. Shivalkar, R. De Mondt, H. Van De Ven, A. Ludwig, P. Van Der Veken, L. Van Vaeck, H. Bult, A.G. Herman, C.J. Vrints, Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits, Basic Res. Cardiol. 105 (2010) 51–59. https://doi.org/10.1007/s00395-009-0052-0
[100] K.L. Aillon, N. El-Gendy, C. Dennis, J.P. Norenberg, J. McDonald, C. Berkland, Iodinated NanoClusters as an inhaled computed tomography contrast agent for lung visualization, Mol. Pharm. 7 (2010) 1274–1282. https://doi.org/10.1021/mp1000718
[101] S. Zalipsky, Chemistry of polyethylene glycol conjugates with biologically active molecules, Adv. Drug Deliv. Rev. 16 (1995) 157–182. https://doi.org/10.1016/0169-409X(95)00023-Z
[102] Z. Li, S. Tan, S. Li, Q. Shen, K. Wang, Cancer drug delivery in the nano era: An overview and perspectives (Review), Oncol. Rep. 38 (2017) 611–624. https://doi.org/10.3892/or.2017.5718
[103] S. Katsuki, T. Matoba, J.I. Koga, K. Nakano, K. Egashira, Anti-inflammatory Nanomedicine for Cardiovascular Disease, Front. Cardiovasc. Med. 4 (2017). https://doi.org/10.3389/fcvm.2017.00087
[104] N.A. Ochekpe, P.O. Olorunfemi, N.C. Ngwuluka, Nanotechnology and drug delivery part 1: Background and applications, Trop. J. Pharm. Res. 8 (2009) 265–274. https://doi.org/10.4314/tjpr.v8i3.44546
[105] S. Sim, N.K. Wong, Nanotechnology and its use in imaging and drug delivery (Review), Biomed. Reports. 14 (2021). https://doi.org/10.3892/br.2021.1418
[106] M. Fathi-Achachelouei, H. Knopf-Marques, C.E. Ribeiro da Silva, J. Barthès, E. Bat, A. Tezcaner, N.E. Vrana, Use of Nanoparticles in Tissue Engineering and Regenerative Medicine, Front. Bioeng. Biotechnol. 7 (2019). https://doi.org/10.3389/fbioe.2019.00113
[107] Y.L. Colson, M.W. Grinstaff, Biologically responsive polymeric nanoparticles for drug delivery, Adv. Mater. 24 (2012) 3878–3886. https://doi.org/10.1002/adma.201200420
[108] M.P. Ajith, M. Aswathi, E. Priyadarshini, P. Rajamani, Recent innovations of nanotechnology in water treatment: A comprehensive review, Bioresour. Technol. 342 (2021) 126000. https://doi.org/10.1016/j.biortech.2021.126000
[109] M. Rai, J.C. Dos Santos, M.F. Soler, P.R. Franco Marcelino, L.P. Brumano, A.P. Ingle, S. Gaikwad, A. Gade, S.S. Da Silva, Strategic role of nanotechnology for production of bioethanol and biodiesel, Nanotechnol. Rev. 5 (2016) 231–250. https://doi.org/10.1515/ntrev-2015-0069
[110] A.A.G. Requicha, Nanorobots, NEMS, and nanoassembly, Proc. IEEE. 91 (2003) 1922–1933. https://doi.org/10.1109/JPROC.2003.818333
[111] S.M. Asil, J. Ahlawat, G.G. Barroso, M. Narayan, Application of nanotechnology in stem-cell-based therapy of neurodegenerative diseases, Appl. Sci. 10 (2020) 4852. https://doi.org/10.3390/app10144852