Metal Doped Nanoparticles: Advances in Synthesis and their Applications in Wound Healing
Laxmikant R. Patil, Shivalingsarj V. Desai, Veeranna S. Hombalimath
Nanoparticles are proven to possess significant and versatile applications in various fields which are attributed to their distinct physicochemical properties. Top-down and bottom-up approaches are generally employed for their synthesis which includes various physical (micro-wave assisted, sono-chemical, laser ablation and combustion), chemical (chemical reduction, co-precipitation, and sol gel) and biological methods. Doping of nanoparticles with elements like silver, copper, cobalt, iron, zinc, rare earth elements and various transition metal elements offers synergistic functional and biological properties. Due to their excellent anti-microbial property which includes both antibacterial and antifungal, they are used as dressing agents in wound healing laden with medicines for effective drug delivery to the site of infection, thus facilitating faster and effective healing.
Keywords
Nanoparticles, Dopants, Wound Healing, Antimicrobial, Healing Mechanism
Published online 2/10/2024, 15 pages
Citation: Laxmikant R. Patil, Shivalingsarj V. Desai, Veeranna S. Hombalimath, Metal Doped Nanoparticles: Advances in Synthesis and their Applications in Wound Healing, Materials Research Foundations, Vol. 160, pp 185-199, 2024
DOI: https://doi.org/10.21741/9781644902974-8
Part of the book on Nanoparticles in Healthcare
References
[1] Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative biology, 6(1), 9-26. https://doi.org/10.1039/c3ib40165k
[2] Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5, 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
[3] Rekha, K., Nirmala, M., Nair, M. G., & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: Condensed Matter, 405(15), 3180-3185. https://doi.org/10.1016/j.physb.2010.04.042
[4] Zhang, X., Song, H., Yu, L., Wang, T., Ren, X., Kong, X., … & Wang, X. (2006). Surface states and its influence on luminescence in ZnS nanocrystallite. Journal of luminescence, 118(2), 251-256. https://doi.org/10.1016/j.jlumin.2005.07.003
[5] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110. https://doi.org/10.1021/cr068445e
[6] Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
[7] Rajendran, V., Deepa, B., & Mekala, R. (2018). Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Materials Today: Proceedings, 5(2), 8796-8803. https://doi.org/10.1016/j.matpr.2017.12.308
[8] Naik, M. M., Naik, H. B., Kottam, N., Vinuth, M., Nagaraju, G., & Prabhakara, M. C. (2019). Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. Journal of Sol-Gel Science and Technology, 91, 578-595. https://doi.org/10.1007/s10971-019-05048-6
[9] Othman, A. A., Osman, M. A., Ali, M. A., Mohamed, W. S., & Ibrahim, E. M. M. (2020). Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 31(2), 1752-1767. https://doi.org/10.1007/s10854-019-02693-z
[10] Sharma, N., Kumar, J., Thakur, S., Sharma, S., & Shrivastava, V. (2013). Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invention Today, 5(1), 50-54. https://doi.org/10.1016/j.dit.2013.03.007
[11] Rajendran, R., & Mani, A. (2020). Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. Journal of Saudi Chemical Society, 24(12), 1010-1024. https://doi.org/10.1016/j.jscs.2020.10.008
[12] Menazea, A. A., Ismail, A. M., Awwad, N. S., & Ibrahium, H. A. (2020). Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. Journal of Materials Research and Technology, 9(5), 9598-9606. https://doi.org/10.1016/j.jmrt.2020.06.077
[13] Matinise, N., Fuku, X. G., Kaviyarasu, K., Mayedwa, N., & Maaza, M. J. A. S. S. (2017). ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Applied Surface Science, 406, 339-347. https://doi.org/10.1016/j.apsusc.2017.01.219
[14] Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials, 22(10), 1039-1059. https://doi.org/10.1002/adma.200904093
[15] Karunakaran, C., Gomathisankar, P., & Manikandan, G. (2010). Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Materials Chemistry and Physics, 123(2-3), 585-594. https://doi.org/10.1016/j.matchemphys.2010.05.019
[16] Pathak, T. K., Kroon, R. E., & Swart, H. C. (2018). Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum, 157, 508-513. https://doi.org/10.1016/j.vacuum.2018.09.020
[17] Sathish, P., Dineshbabu, N., Ravichandran, K., Arun, T., Karuppasamy, P., SenthilPandian, M., & Ramasamy, P. (2021). Combustion synthesis, characterization and antibacterial properties of pristine ZnO and Ga doped ZnO nanoparticles. Ceramics International, 47(19), 27934-27941. https://doi.org/10.1016/j.ceramint.2021.06.224
[18] Klueh, U., Wagner, V., Kelly, S., Johnson, A., & Bryers, J. D. (2000). Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(6), 621-631. https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
[19] Jansen, B., Rinck, M., Wolbring, P., Strohmeier, A., & Jahns, T. (1994). In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. Journal of biomaterials applications, 9(1), 55-70. https://doi.org/10.1177/088532829400900103
[20] Stensberg, M. C., Wei, Q., McLamore, E. S., Porterfield, D. M., Wei, A., & Sepúlveda, M. S. (2011). Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine, 6(5), 879-898. https://doi.org/10.2217/nnm.11.78
[21] Ghosh, S., Goudar, V. S., Padmalekha, K. G., Bhat, S. V., Indi, S. S., & Vasan, H. N. (2012). ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. Rsc Advances, 2(3), 930-940. https://doi.org/10.1039/C1RA00815C
[22] Abdulkadhim, W. K. (2021, September). Synthesis titanium dioxide nanoparticles doped with silver and Novel antibacterial activity. In Journal of Physics: Conference Series (Vol. 1999, No. 1, p. 012033). IOP Publishing. https://doi.org/10.1088/1742-6596/1999/1/012033
[23] Li, P., Li, J., Wu, C., Wu, Q., & Li, J. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 16(9), 1912. https://doi.org/10.1088/0957-4484/16/9/082
[24] Thiel, J., Pakstis, L., Buzby, S., Raffi, M., Ni, C., Pochan, D. E., & Shah, S. I. (2007). Antibacterial properties of silver‐doped titania. Small, 3(5), 799-803. https://doi.org/10.1002/smll.200600481
[25] Bahadur, J., Agrawal, S., Panwar, V., Parveen, A., & Pal, K. (2016). Antibacterial properties of silver doped TiO 2 nanoparticles synthesized via sol-gel technique. Macromolecular Research, 24, 488-493. https://doi.org/10.1007/s13233-016-4066-9
[26] Vincent, M., Duval, R. E., Hartemann, P., & Engels‐Deutsch, M. (2018). Contact killing and antimicrobial properties of copper. Journal of applied microbiology, 124(5), 1032-1046. https://doi.org/10.1111/jam.13681
[27] Rajendran, V., Deepa, B., & Mekala, R. (2018). Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Materials Today: Proceedings, 5(2), 8796-8803. https://doi.org/10.1016/j.matpr.2017.12.308
[28] Samavati, A., Ismail, A. F., Nur, H., Othaman, Z., & Mustafa, M. K. (2016). Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method. Chinese Physics B, 25(7), 077803. https://doi.org/10.1088/1674-1056/25/7/077803
[29] Garg, A., Singh, A., Sangal, V. K., Bajpai, P. K., & Garg, N. (2017). Synthesis, characterization and anticancer activities of metal ions Fe and Cu doped and co-doped TiO 2. New Journal of Chemistry, 41(18), 9931-9937. https://doi.org/10.1039/C7NJ02098H
[30] Rishikesan, S., & Basha, M. A. M. (2020). Synthesis, Characterization and Evaluation of Antimicrobial, Antioxidant & Anticancer Activities of Copper Doped Zinc Oxide Nanoparticles. Acta Chimica Slovenica, 67(1). https://doi.org/10.17344/acsi.2019.5379
[31] Naik, E. I., Naik, H. B., Sarvajith, M. S., & Pradeepa, E. (2021). Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. Inorganic Chemistry Communications, 130, 108678 https://doi.org/10.1016/j.inoche.2021.108678
[32] Shi, D., Yang, H., & Xue, X. (2020). Preparation, characterization and antibacterial properties of cobalt doped titania nanomaterials. Chinese Journal of Chemical Engineering, 28(5), 1474-1482. https://doi.org/10.1016/j.cjche.2020.03.017
[33] Hong, X., Yang, Y., Li, X., Abitonze, M., Diko, C. S., Zhao, J., & Zhu, Y. (2021). Enhanced anti-Escherichia coli properties of Fe-doping in MgO nanoparticles. RSC advances, 11(5), 2892-2897. https://doi.org/10.1039/D0RA09590G
[34] Malik, R., Tomer, V. K., Mishra, Y. K., & Lin, L. (2020). Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews, 7(2), 021301. https://doi.org/10.1063/1.5123479
[35] Rivera, V. F., Auras, F., Motto, P., Stassi, S., Canavese, G., Celasco, E., & Cauda, V. (2013). Length‐dependent charge generation from vertical arrays of high‐aspect‐ratio ZnO nanowires. Chemistry-A European Journal, 19(43), 14665-14674. https://doi.org/10.1002/chem.201204429
[36] Djerdj, I., Jagličić, Z., Arčon, D., & Niederberger, M. (2010). Co-doped ZnO nanoparticles: minireview. Nanoscale, 2(7), 1096-1104. https://doi.org/10.1039/c0nr00148a
[37] Yang, Y. C., Song, C., Wang, X. H., Zeng, F., & Pan, F. (2008). Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn 1− x Cr x O films. Journal of Applied Physics, 103(7), 074107. https://doi.org/10.1063/1.2903152
[38] Namgung, G., Ta, Q. T. H., Yang, W., & Noh, J. S. (2018). Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO nanorods/Ag nanowires bilayers. ACS applied materials & interfaces, 11(1), 1411-1419. https://doi.org/10.1021/acsami.8b17336
[39] Zhao, Y., Li, C., Liu, X., Gu, F., Du, H. L., & Shi, L. (2008). Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame. Applied Catalysis B: Environmental, 79(3), 208-215. https://doi.org/10.1016/j.apcatb.2007.09.044
[40] Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
[41] Maklebust, J., & Sieggreen, M. (2001). Pressure ulcers: Guidelines for prevention and management. Lippincott Williams & Wilkins.
[42] Flanagan, M. (2013). Wound healing and skin integrity: principles and practice. John Wiley & Sons.
[43] Ovais, M., Ahmad, I., Khalil, A. T., Mukherjee, S., Javed, R., Ayaz, M., … & Shinwari, Z. K. (2018). Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Applied microbiology and biotechnology, 102, 4305-4318. https://doi.org/10.1007/s00253-018-8939-z
[44] Tejiram, S., Kavalukas, S.L., Shupp, J.W., Barbul, A., 2016. 1 – Wound healing, in: Ågren, M.S. (Ed.), Wound Healing Biomaterials. Woodhead Publishing, pp. 3-39. https://doi.org/10.1016/B978-1-78242-455-0.00001-X https://doi.org/10.1016/B978-1-78242-455-0.00001-X
[45] Chen, H., Lan, G., Ran, L., Xiao, Y., Yu, K., Lu, B., … & Lu, F. (2018). A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate polymers, 183, 70-80. https://doi.org/10.1016/j.carbpol.2017.11.029
[46] Ather, S., Harding, K. G., & Tate, S. J. (2009). Advanced Textiles for Wound Care. Woodhead Publishing, Duxford, UK, doi: https://dx. doi. org/10.1533/9781845696306.1, 3, 3-19. https://doi.org/10.1533/9781845696306.1.3
[47] Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. https://doi.org/10.3390/ma12132176
[48] Hamdan, S., Pastar, I., Drakulich, S., Dikici, E., Tomic-Canic, M., Deo, S., & Daunert, S. (2017). Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS central science, 3(3), 163-175. https://doi.org/10.1021/acscentsci.6b00371
[49] Medici, S., Peana, M., Nurchi, V. M., & Zoroddu, M. A. (2019). Medical uses of silver: history, myths, and scientific evidence. Journal of medicinal chemistry, 62(13), 5923-5943. https://doi.org/10.1021/acs.jmedchem.8b01439
[50] Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. https://doi.org/10.3390/ma12132176
[51] Hampton, S., 2015. Selecting wound dressings for optimum healing. Nurs Times 111, 20-23. https://doi.org/10.12968/bjcn.2015.20.Sup6.S10
[52] Bansod, S. D., Bawaskar, M. S., Gade, A. K., & Rai, M. K. (2015). Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET nanobiotechnology, 9(4), 165-171. https://doi.org/10.1049/iet-nbt.2014.0042
[53] Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. https://doi.org/10.3390/ma12132176
[54] Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology advances, 32(4), 711-726. https://doi.org/10.1016/j.biotechadv.2013.11.006
[55] Parani, M., Lokhande, G., Singh, A., & Gaharwar, A. K. (2016). Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Applied Materials & Interfaces, 8(16), 10049-10069. https://doi.org/10.1021/acsami.6b00291
[56] Negut, I., Grumezescu, V., & Grumezescu, A. M. (2018). Treatment strategies for infected wounds. Molecules, 23(9), 2392. https://doi.org/10.3390/molecules23092392
[57] Erol, A., Rosberg, D. B. H., Hazer, B., & Göncü, B. S. (2020). Biodegradable and biocompatible radiopaque iodinated poly-3-hydroxy butyrate: synthesis, characterization and in vitro/in vivo X-ray visibility. Polymer Bulletin, 77, 275-289. https://doi.org/10.1007/s00289-019-02747-6
[58] Lai, X., Wang, M., Zhu, Y., Feng, X., Liang, H., Wu, J., & Shao, L. (2021). ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting nuclear translocation of p-NFκB p65 and cysteine deficiency in keratinocytes. Journal of hazardous materials, 410, 12456 https://doi.org/10.1016/j.jhazmat.2020.124566