Nanoparticles in Glioma Therapy and Drug Delivery Systems

$30.00

Nanoparticles in Glioma Therapy and Drug Delivery Systems

K. Bhanu Revathi, S.M. Hamsaveni, V. Bhavyashree, N. Rajeswari, Shinomol George Kunnel

Gliomas are tumours of the glial cells of the brain, and they are highly complicated in terms of treatment, recovery, and diagnosis. Some of them are high grade tumours that require sophisticated imaging tools for diagnosis. Nanoparticles offer many advantages as targeted drug delivery systems causing minimal harm to the surrounding tissues and higher bioavailability at the site of the tumour. This chapter aims in exploring the various treatment methods and the possibility of using cellular macromolecules as targets for drug delivery. Combinatorial approaches along with nanoparticles are required to minimise the recurrence of tumour and to enhance patient recovery in various types of gliomas.

Keywords
Glioma, Glioblastoma, Nanoparticles, Therapy, Drug Delivery

Published online 2/10/2024, 17 pages

Citation: K. Bhanu Revathi, S.M. Hamsaveni, V. Bhavyashree, N. Rajeswari, Shinomol George Kunnel, Nanoparticles in Glioma Therapy and Drug Delivery Systems, Materials Research Foundations, Vol. 160, pp 296-312, 2024

DOI: https://doi.org/10.21741/9781644902974-11

Part of the book on Nanoparticles in Healthcare

References
[1] D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system, Acta Neuropathol. 114(2) (2007) 97-109. https://doi.org/10.1007/s00401-007-0243-4
[2] H Suzuki, A. Kosuke, C.Kenichi, S. Yusuke, S. Yusuke, S. Yuichi, S. Teppei et al., Mutational landscape and clonal architecture in grade II and III gliomas. Nature genetics, 47, no. 5 (2015) 458-468.
[3] N. A. O. Bush, and B. Nicholas, The effect of molecular diagnostics on the treatment of glioma. Current oncology reports 19 (2017) 1-9.
[4] P. Wen, D.Reardon, Progress in glioma diagnosis, classification and treatment, Nat Rev Neurol , 12, (2016)69–70. https://doi.org/10.1038/nrneurol.2015.242
[5] P.Y. Wen and S. Kesari. Malignant gliomas in adults. New England Journal of Medicine 359, no. 5 (2008) 492-507.
[6] A. Pirzkall,,C. McGue, S. Saraswathy, S. Cha, R. Liu, S. Vandenberg, K. R. Lamborn, M. S. Berger, S. M. Chang, and S. J. Nelson, Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro-oncology 11, no. 6 (2009) 842-852.
[7] J. Kalpathy-Cramer, E. R. Gerstner, K. E. Emblem, O. C. Andronesi, and B Rosen. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer research 74, no. 17 (2014) 4622-4637.
[8] M. R. Gilbert, J. J. Dignam, T. S. Armstrong, J. S. Wefel, D.T. Blumenthal, M.A. Vogelbaum, H. Colman, A. Chakravarti, S. Pugh, M. Won, R. Jeraj, P. D. Brown, K. A. Jaeckle, D. Schiff, V. W. Stieber, D. G. Brachman, M. Werner-Wasik, I. W. Tremont-Lukats, E. P. Sulman, K. D. Aldape, W. J. Neurosurg Rev Curran, M. P Mehta. A randomized trial of bevacizumab for newly diagnosed glioblastoma. 370; N Engl J Med (2014) 699–708:. https://doi.org/10.1056/NEJMoa1308573
[9] M. Westphal, D.C. Hilt, E. Bortey, P. Delavault, R. Olivares, P. C. Warnke, I. R. J. Whittle, Jääskeläinen, Z. Ram, A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. 5;. NeuroOncol (2003):79–88. https://doi.org/10.1215/S1522-8517-02-00023-6
[10] C. Alifieris, D. T. Trafalis. Glioblastoma multiforme: pathogenesis and treatment. 152; Pharmacol Ther (2015),63–82. https://doi.org/10.1016/j. pharmthera.2015.05.005
[11] D. N. Franz, E. Belousova, S. Sparagana, E. M. Bebin, M. Frost, R. Kuperman, O. Witt, M. H. Kohrman, J. R. Flamini, J. Y. Wu, P. Curatolo, P. J. de Vries, V. H. Whittemore, E. A. Thiele, J. P. Ford, G. Shah, H. Cauwel, D. Lebwohl, T. Sahmoud, S. Jozwiak. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebocontrolled phase 3 trial. 381; Lancet Lond Engl (2013).125–132. https://doi.org/10.1016/S0140-6736(12)61134-9
[12] S. Phuphanich, C.J. Wheeler, J. D. Rudnick, M. Mazer, H. Wang, M. A. Nuño, J. E. Richardson, X. Fan, J. Ji, R. M. Chu, J. G. Bender, E. S. Hawkins, C. G. Patil, K. L. Black, J. S. Yu. Phase I trial of a multi-epitopepulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. CII 62; Cancer Immunol Immunother (2013).125–135. https://doi.org/10.1007/s00262-012-1319-0
[13] E. T. Sayegh, T. Oh, S. Fakurnejad, O. Bloch, A. T. Parsa. Vaccine therapies for patients with glioblastoma. 119 J Neurooncol (2014).531– 546. https://doi.org/10.1007/s11060-014-1502-6 79.
[14] O. Bloch, C. A. Crane, Y. Fuks, R. Kaur, M. K. Aghi, M. S. Berger, N. A. Butowski, S. M. Chang, J. L. Clarke, M. W. McDermott, M. D. Prados, A. E. Sloan, J. N. Bruce, A. T. Parsa. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. 16; Neuro-Oncol (2014):274–279. https://doi.org/10.1093/neuonc/ not203
[15] M.D. Prados, S. A. Byron, N. L. Tran, J. J. Phillips, A. M. Molinaro, K. L. Ligon, P. Y. Wen, J. G. Kuhn, I. K. Mellinghoff, J. F de Groot, H. Colman, T. F. Cloughesy, S. M. Chang, T. C. Ryken, W. D. Tembe, J. A. Kiefer, M. E. Berens, D. W. Craig, J. D. Carpten, J. M. Trent. Toward precision medicine in glioblastoma: the promise and the challenges. 17; Neuro-Oncol (2014):1051–1063. https://doi.org/10.1093/neuonc/nov031
[16] B. S. Mahmoud, A. H. AlAmri, and C. McConville. Polymeric nanoparticles for the treatment of malignant gliomas. Cancers 12, no. 1 (2020). 175. https://doi.org/10.3390/cancers12010175
[17] C. A. Caraway, H. Gaitsch, E. E. Wicks, A. Kalluri, N. Kunadi, and B. M. Tyler. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches, Polymers14,(2022.) no. 14: 2963. https://doi.org/10.3390/polym14142963
[18] M. X. Liu, J. Zhong, N.N. Dou, M. Visocchi, and G. Gao. One-pot aqueous synthesization of near-infrared quantum dots for bioimaging and photodynamic therapy of gliomas. Trends in Reconstructive Neurosurgery: Neurorehabilitation, Restoration and Reconstruction (2017). 303-308. https://doi.org/10.1007/978-3-319-39546-3_44
[19] K. Mahmoudi and C. G. Hadjipanayis. The application of magnetic nanoparticles for the treatment of brain tumors. Frontiers in chemistry 2 (2014). 109. https://doi.org/10.3389/fchem.2014.00109
[20] L. Štefančíková, S. Lacombe, D. Salado, E. Porcel, E. Pagáčová, O. Tillement, F. Lux, D. Depeš, S. Kozubek, and M. Falk. “Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells.” Journal of nanobiotechnology 14, no. 1 (2016): 1-15. https://doi.org/10.1186/s12951-016-0215-8
[21] M. Li, H. Deng, H. Peng, Q. Wang. Functional nanoparticles in targeting glioma diagnosis and therapies. Journal of nanoscience and nanotechnology 14, no. 1 (2014). 415-432.
[22] H. E. Marei. Multimodal targeting of glioma with functionalized nanoparticles. Cancer Cell International 22, no. 1 (2022). 265. https://doi.org/10.1186/s12935-022-02687-8
[23] H. Xin, X. Jiang, J. Gu, X. Sha, L. Chen, K. Law, Y. Chen, X. Wang, Y. Jiang, and X. Fang. Angiopep-conjugated poly (ethylene glycol)-co-poly (ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32, no. 18 (2011). 4293-4305. https://doi.org/10.1016/j.biomaterials.2011.02.044
[24] B. Zhang, X. Sun, H. Mei, Y. Wang, Z. Liao, J. Chen, Q. Zhang, Y. Hu, Z. Pang, and X. Jiang. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34, no. 36 (2013). 9171-9182. https://doi.org/10.1016/j.biomaterials.2013.08.039
[25] P. P. Di Mauro, A. Cascante, P. B. Vilà, V. Gómez-Vallejo, J. Llop, and S. Borrós. Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma. International Journal of Pharmaceutics 553, no. 1-2 (2018). 169-185. https://doi.org/10.1016/j.ijpharm.2018.10.022
[26] S. Pawar, Shreya, T. Koneru, E. McCord, K. Tatiparti, S. Sau, and A. K. Iyer. LDL receptors and their role in targeted therapy for glioma: a review. Drug Discovery Today 26, no. 5 (2021). 1212-1225. https://doi.org/10.1016/j.drudis.2021.02.008
[27] M. Nikanjam, Mina, E. A. Blakely, K. A. Bjornstad, X. Shu, T. F. Budinger, and T. M. Forte. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. International journal of pharmaceutics 328, no. 1 (2007). 86-94. https://doi.org/10.1016/j.ijpharm.2006.07.046
[28] F. Pourgholi, J.N. Farhad, H. S. Kafil, and M.Yousefi. Nanoparticles: Novel vehicles in treatment of Glioblastoma. Biomedicine & Pharmacotherapy 77 (2016). 98-107. https://doi.org/10.1016/j.biopha.2015.12.014
[29] M. M. Song, H.L. Xu, J.X. Liang, H. H. Xiang, R. Liu, and Y. X. Shen. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Materials Science and Engineering: C 77 (2017). 904-911. https://doi.org/10.1016/j.msec.2017.03.309
[30] M. M. Agwa and S. Sabra. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. International Journal of Biological Macromolecules 167 (2021), 1527-1543. https://doi.org/10.1016/j.ijbiomac.2020.11.107
[31] A. O. Elzoghby, M. A. Abdelmoneem, I. A. Hassanin, M. M. Abd Elwakil, M. A. Elnaggar, S. Mokhtar, J. Y. Fang, and K. A. Elkhodairy. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 263 (2020). 120355. https://doi.org/10.1016/j.biomaterials.2020.120355
[32] M. J. Ramalho, J. A. Loureiro, M. A. N. Coelho, and M. C. Pereira. Transferrin receptor-targeted nanocarriers: overcoming barriers to treat glioblastoma. Pharmaceutics 14, no. 2 (2022). 279. https://doi.org/10.3390/pharmaceutics14020279
[33] T. Koneru, E. McCord, S. Pawar, K. Tatiparti, S. Sau, and A. K. Iyer. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS omega 6, no. 13 (2021). 8727-8733. https://doi.org/10.1021/acsomega.0c05848
[34] M. Li, H. Deng, H. Peng, and Q. Wang. Functional nanoparticles in targeting glioma diagnosis and therapies. Journal of nanoscience and nanotechnology 14, no. 1 (2014). 415-432. https://doi.org/10.1166/jnn.2014.8757
[35] G. A. Cabral-Pacheco, I. Garza-Veloz, C. Castruita-De la Rosa, J. M. Ramirez-Acuna, B. A. Perez-Romero, J. F. Guerrero-Rodriguez, N. Martinez-Avila, and M. L. Martinez-Fierro. The roles of matrix metalloproteinases and their inhibitors in human diseases. International journal of molecular sciences 21, no. 24 (2020), 9739. https://doi.org/10.3390/ijms21249739
[36] A. O. Elzoghby, M. A. Abdelmoneem, I. A. Hassanin, M. M. Abd Elwakil, M. A. Elnaggar, S. Mokhtar, J. Y. Fang, and K. A. Elkhodairy. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 263 (2020). 120355. https://doi.org/10.1016/j.biomaterials.2020.120355
[37] G. A. Cabral-Pacheco, I. Garza-Veloz, C. Castruita-De la Rosa, J. M. Ramirez-Acuna, B. A. Perez-Romero, J. F. Guerrero-Rodriguez, N. Martinez-Avila, and M. L. Martinez-Fierro. The roles of matrix metalloproteinases and their inhibitors in human diseases. International journal of molecular sciences 21, no. 24 (2020). 9739. https://doi.org/10.3390/ijms21249739
[38] Q. Hu, G. Gu, Z. Liu, M. Jiang, T. Kang, D. Miao, Y. Tu, Z. Pang, Q. Song, L. Yao, and H. Xia, F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials 34, no. 4 (2013): 1135-1145. https://doi.org/10.1016/j.biomaterials.2012.10.048
[39] M. Li, H. Deng, H. Peng, and Q. Wang. Functional nanoparticles in targeting glioma diagnosis and therapies. Journal of nanoscience and nanotechnology 14, no. 1 (2014). 415-432. https://doi.org/10.1166/jnn.2014.8757
[40] Q. Hu, G. Gu, Z. Liu, M. Jiang, T. Kang, D. Miao, Y. Tu Z. Pang, Q. Song, L. Yao, H. Xia. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials 34, no. 4 (2013). 1135-1145. https://doi.org/10.1016/j.biomaterials.2012.10.048
[41] S. Wang, Y. Meng, C. Li, M. Qian, and R. Huang. Receptor-mediated drug delivery systems targeting to glioma. Nanomaterials 6, no. 1 (2015). 3. https://doi.org/10.3390/nano6010003