Promising Role of Theranostic Nanoparticles in Lung Diseases
M. Sonia Angeline, Vinita Ernest, Nitin John
The role of nanoparticles is inevitable in the medical sector in the present era of technology. Though the field of medicine deals with the diagnosis and treatment of various diseases with the development of pharmaceuticals, nanoparticles are nevertheless gaining much attention with the discovery and usage in recent years. Nanoparticles due to their smaller size, efficacy and other potentials such as bio-compatible nature and functionalization have been increasingly used as theranostic agents (diagnosis plus therapy) in various diseases. This chapter reviews the potential and significant role of theranostic nanoparticles in lung diseases.
Keywords
Theranostic Nanoparticle, Lung Diseases, Chronic Bronchitis, Tuberculosis
Published online 2/10/2024, 49 pages
Citation: M. Sonia Angeline, Vinita Ernest, Nitin John, Promising Role of Theranostic Nanoparticles in Lung Diseases, Materials Research Foundations, Vol. 160, pp 247-295, 2024
DOI: https://doi.org/10.21741/9781644902974-10
Part of the book on Nanoparticles in Healthcare
References
[1] T. Lammers, S. Aime, W.E. Hennink, G. Storm, F. Kiessling, Theranostic nanomedicine. Acc Chem Res. 44(2011)1029–1038. https://doi.org/10.1021/ar200019c
[2] W. Zhong, X. Zhang, Y. Zeng, D. Lin, J. Wu, Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 14(2021)2067-2089. https://doi.org/10.1007/s12274-020-3180-3
[3] F. Chen, E.B. Ehlerding, W. Cai, Theranostic nanoparticles. J Nucl Med. 55 (2014)1919-22. https://doi.org/10.2967/jnumed.114.146019
[4] J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 62 (2010)1064–1079. https://doi.org/10.1016/j.addr.2010.07.009
[5] Targeting Cellular Signalling Pathways in Lung Diseases. In Springer eBooks. Springer Nat. (2021). https://doi.org/10.1007/978-981-33-6827-9
[6] M. Doroudian, M. H. Azhdari, N. Goodarzi, D. O’Sullivan, S.C. Donnelly, Smart Nanotherapeutics and Lung Cancer. Pharma. 13(2021)1972. https://doi.org/10.3390/pharmaceutics13111972
[7] S. St Claire, H. N. Gouda, K. Schotte, R. Fayokun, D. Fu, C. Varghese, &V. M. Prasad, Lung health, tobacco, and related products: gaps, challenges, new threats, and suggested research. Am. J. Physiol. Lung Cell Mol. 318(2020) L1004–L1007. https://doi.org/10.1152/ajplung.00101.2020
[8] O. K. Kurt, J. Zhang, K. E. Pinkerton, Pulmonary health effects of air pollution. Curr Opin Pulm Med. 22(2016)138–143. https://doi.org/10.1097/mcp.0000000000000248
[9] J. Lelieveld, J. Evans, M. Fnais, D. Giannadaki, & A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nat. 525(2015)367–371. https://doi.org/10.1038/nature15371
[10] M. Vats, Respiratory Disease and Infection: A New Insight. BoD – Books on Demand. (2013)
[11] M. Obeidat, I. P. Hall, Genetics of complex respiratory diseases: implications for pathophysiology and pharmacology studies. Br. J. Pharmacol. 163(2011)96–105. https://doi.org/10.1111/j.1476-5381.2011.01222.x
[12] K. Vlahovich, A. Sood. A 2019 Update on Occupational Lung Diseases: A Narrative Review. Pulm. Ther, 7(2021)75–87. https://doi.org/10.1007/s41030-020-00143-4
[13] S. Cho, H. W. Stout-Delgado, Aging and Lung Disease. Annual Rev. Psysiol. 82(2020)433–459. https://doi.org/10.1146/annurev-physiol-021119-034610
[14] D. E. Schraufnagel, The world respiratory diseases report [Editorial]. Int. J. Tuberc. Lung Dis., 17(2013)1517. https://doi.org/10.5588/ijtld.13.0743
[15] P. Song, D. Adeloye, H. Salim, J. P. R. D. Santos, H. Campbell, A. Sheikh, I. Rudan, Global, regional, and national prevalence of asthma in 2019: a systematic analysis and modelling study. J. Glob. Health, 12(2022). https://doi.org/10.7189/jogh.12.04052
[16] D. Adeloye, P. Song, Y. Zhu, H. Campbell, A. Sheikh, I. Rudan, Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir. Med., 10(2022)447–458. https://doi.org/10.1016/s2213-2600(21)00511-7
[17] F. Prabhu, A. R. Sikes, & I. Sulapas, Pulmonary Infections. Springer eBooks, (2016)1083–1101. https://doi.org/10.1007/978-3-319-04414-9_91
[18] F. Siddiqui, S. Vaqar, A. H. Siddiqui, Lung Cancer. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 https://www.ncbi.nlm.nih.gov/books/NBK482357/
[19] S. D. Shukla, K. S. Vanka, A. Chavelier, M. D. Shastri, M. M. Tambuwala,H. A. Baksh, K. Pabreja, N. M. Ashraf, & R. V. O’Toole, Chronic respiratory diseases: An introduction and need for novel drug delivery approaches. Elsevier eBooks, (2020)1–31. https://doi.org/10.1016/b978-0-12-820658-4.00001-7
[20] R. A. Pleasants, Clinical Pharmacology of Oral Maintenance Therapies for Obstructive Lung Diseases. Respir. Care 63(2018)671–689. https://doi.org/10.4187/respcare.06068
[21] L. C. Lands, S. Stanojevic, Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. The Cochrane Library, (2019) https://doi.org/10.1002/14651858.cd001505.pub5
[22] A. Kuzmov, T. Minko, Nanotechnology approaches for inhalation treatment of lung diseases. J Controlled Release, 219(2015)500–518. https://doi.org/10.1016/j.jconrel.2015.07.024
[23] Q. Zhou, S. S. Leung, P. A. Tang, T. Parumasivam, Z. H. Loh, & H. Chan. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev., 85(2015)83–99. https://doi.org/10.1016/j.addr.2014.10.022
[24] J. T. Patton, & P. R. Byron. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov., 6(2007)67–74. https://doi.org/10.1038/nrd2153
[25] R. A. Athanazio. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics, 67(2012)1335–1343. https://doi.org/10.6061/clinics/2012(11)19
[26] M. F. Hashmi, Asthma. StatPearls – NCBI Bookshelf. (2023) https://www.ncbi.nlm.nih.gov/books/NBK430901/
[27] C. Porsbjerg, E. Melén, L. Lehtimäki, D. Shaw. Asthma. The Lancet, 401(2023)858–873. https://doi.org/10.1016/s0140-6736(22)02125-0
[28] J. Quirt, K. J. Hildebrand, J. A. Mazza, F. Noya, & H. Kim. Asthma. AACI, 14 (2018). https://doi.org/10.1186/s13223-018-0279-0
[29] M. Trivedi, E. Denton. Asthma in Children and Adults—What Are the Differences and What Can They Tell us About Asthma? Front Pediatr., 7(2019). https://doi.org/10.3389/fped.2019.00256
[30] T. To, S. Stanojevic, G. Moores, A. S. Gershon, E. D. Bateman, A. A. Cruz, L. Boulet. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health, 12(2012). https://doi.org/10.1186/1471-2458-12-204
[31] J. Greiwe, J. A. Bernstein. Occupational Asthma. Springer eBooks, (2018)1–16. https://doi.org/10.1007/978-3-319-58726-4_16-1
[32] S. T. Holgate, S. E. Wenzel, D. S. Postma, S. T. Weiss, H. Renz, & P.D. Sly. Asthma. Nat. Rev. Dis. Primers, 1(2015). https://doi.org/10.1038/nrdp.2015.25
[33] Z. He, J. Feng, J. Xia, Q. Wu, H. Yang, & Q. Ma. Frequency of Signs and Symptoms in Persons with Asthma. Respir. Care, 65(2020)252–264. https://doi.org/10.4187/respcare.06714
[34] J. L. Mims. Asthma: definitions and pathophysiology. IFAR, 5(2015)S2–S6. https://doi.org/10.1002/alr.21609
[35] H. K. Reddel, L. B. Bacharier, E. D. Bateman, C. E. Brightling, G. Brusselle, R. Buhl, A. A. Cruz, L. Duijts, J. M. Drazen, J. M. FitzGerald, L. Fleming, H. Inoue, F. W. Ko, J. A. Krishnan, M. L. Levy, J. Lin, K. Mortimer, P. M. Pitrez, A. Sheikh, L. Boulet. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med., 205(2022)17–35. https://doi.org/10.1164/rccm.202109-2205pp
[36] P. G. Gibson, H. Powell, J. Coughlan, A. J. Wilson, M. Abramson, P. Haywood, A. Bauman, M. J. Hensley, E. H. Walters. Self-management education and regular practitioner review for adults with asthma. CDSR, (2003)CD001117. doi: 10.1002/14651858.CD001117.
[37] V. E. Ortega, & M. Izquierdo. Drugs for Preventing and Treating Asthma. MSD Manual Consumer Version. (2022) https://www.msdmanuals.com/en-in/home/lung-and-airway-disorders/asthma/drugs-for-preventing-and-treating-asthma
[38] M. Kupczyk, B. Dahlén, & S. E. Dahlén. Which anti-inflammatory drug should we use in asthma? Pol. Arch. Intern. Med. (2011); https://www.mp.pl/paim/issue/article/1115/
[39] D. M. Williams, &B. K. Rubin. Clinical Pharmacology of Bronchodilator Medications. Respir. Care, 63(2018)641–654. https://doi.org/10.4187/respcare.06051
[40] M. Cazzola, P. Rogliani, & M. G. Matera. Ultra-LABAs for the treatment of asthma. Respir. Med., 156(2019)47–52. https://doi.org/10.1016/j.rmed.2019.08.005
[41] R. Beasley, M. A. Holliday, H. K. Reddel, I. Braithwaite, S. Ebmeier, R. J. Hancox, T. Harrison, C. Houghton, K. Oldfield, A. Papi, I. D. Pavord, M. Williams, & M. Weatherall. Controlled Trial of Budesonide–Formoterol as Needed for Mild Asthma. NEJM 380(2019) 2020–2030. https://doi.org/10.1056/nejmoa1901963
[42] S. Wenzel. Severe asthma: from characteristics to phenotypes to endotypes. Clin. Exp. Allergy, 42(2012)650–658. https://doi.org/10.1111/j.1365-2222.2011.03929.x
[43] H. M. Jin. Biological treatments for severe asthma. J Yeungnam Med Sci., 37(2020)262–268. https://doi.org/10.12701/yujm.2020.00647
[44] I. Agache, I. Eguiluz-Gracia, C. Cojanu, A. Laculiceanu, S. Del Giacco, M. Zemelka-Wiacek, A. Kosowska, C. A. Akdis, & M. Jutel. Advances and highlights in asthma in 2021. ALGY, 76(2021)3390–3407. https://doi.org/10.1111/all.15054
[45] R. E. O’Hehir, N. Varese, K. Deckert, C. Zubrinich, M. C. Van Zelm, J. M. Rolland, M. Hew. Epidemic Thunderstorm Asthma Protection with Five-Grass Pollen Tablet Sublingual Immunotherapy: A Clinical Trial. Am. J. Respir. Crit. Care Med., 198(2018)126–128. https://doi.org/10.1164/rccm.201711-2337le
[46] K. D. G. Van De Kant, L. J. T. M. Van Der Sande, Q. Jöbsis, O. C. P. Van Schayck, E. Dompeling. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir. Res., 13(2012)117. https://doi.org/10.1186/1465-9921-13-117
[47] Y. Y. Broza, H. Haick. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomed., 8(2013)785–806. https://doi.org/10.2217/nnm.13.64
[48] B. Pelaz, C. Alexiou, R. A. Alvarez-Puebla, F. Alves, A. M. Andrews, S. Ashraf, L. P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, S. Bosi, M. Carril,W. C. W. Chan, C. Chen, X. D. Chen, X. Chen, Z. Cheng, D. Cui, J. Du, W. J. Parak. Diverse Applications of Nanomedicine. ACS Nano, 11(2017)2313–2381. https://doi.org/10.1021/acsnano.6b06040
[49] T. Keil, D. Feldmann, G. Costabile, Q. Zhong, S. R. P. Da Rocha, & O. M. Merkel. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur. J. Pharm. Biopharm., 143(2019)61–69. https://doi.org/10.1016/j.ejpb.2019.08.012
[50] M. Nasr, M. Najlah, A. D’Emanuele, & A. Elhissi. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharm. 461(2014)242–250. https://doi.org/10.1016/j.ijpharm.2013.11.023
[51] N. J. Kenyon, J. M. Bratt, J. M. Lee, J. Luo, L. M. Franzi, A. A. Zeki, K. S. Lam. Self-Assembling Nanoparticles Containing Dexamethasone as a Novel Therapy in Allergic Airways Inflammation. PLOS ONE, 8(2013) e77730. https://doi.org/10.1371/journal.pone.0077730
[52] Bhavna, F. J. Ahmad, G. Mittal, G. Jain, G. Malhotra, R. K. Khar, A. Bhatnagar. Nano-salbutamol dry powder inhalation: A new approach for treating broncho-constrictive conditions. Eur. J. Pharm. Biopharm. 71(2009)282–291. https://doi.org/10.1016/j.ejpb.2008.09.018
[53] M. G. Arafa, B. M. Ayoub. Nano-vesicles of salbutamol sulphate in metered dose inhalers: formulation, characterization and in vitro evaluation. Int. J. Appl. Pharm., 9(2017)100. https://doi.org/10.22159/ijap.2017v9i6.22448
[54] K. Wang, Y. Feng, S. Li, W. Li, X. Chen, R. Yi, H. Zhang, & Z. Hong. Oral Delivery of Bavachinin-Loaded PEG-PLGA Nanoparticles for Asthma Treatment in a Murine Model. J. Biomed. Nanotechnol., 14(2018)1806–1815. https://doi.org/10.1166/jbn.2018.2618
[55] S. Chakraborty, I. Ehsan, B. Mukherjee, L. Mondal, S. Roy, K. D. Saha, B. Paul, M. C. Debnath, T. Bera. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomed.: Nanotechnol. Biol. Med., 20(2019)102006. https://doi.org/10.1016/j.nano.2019.04.009
[56] V. M. Joshi, A. Adamcakova-Dodd, X. Jing, A. Wongrakpanich, K. N. Gibson-Corley, P. S. Thorne, & A. K. Salem. Development of a Poly (lactic-co-glycolic acid) Particle Vaccine to Protect against House Dust Mite Induced Allergy. Aaps Journal., 16(2014)975–985. https://doi.org/10.1208/s12248-014-9624-5
[57] M. Zedan, A. Darwish, M. E. Wassefy, E. O. Khashaba, E. Osman, A. M. Osman, & N. Ellithy. Association between the chemokine receptor 3 gene polymorphism and clinical asthma phenotypes among Egyptian asthmatic children. Alex J Pediatr., 34(2021)237. https://doi.org/10.4103/1687-9945.337835
[58] M. Kumar, X. Kong, A. K. Behera, G. Hellermann, R. F. Lockey, & S. S. Mohapatra. Chitosan IFN-γ-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet. Vaccine ther., 1(2003)3. https://doi.org/10.1186/1479-0556-1-3
[59] A. K. Agarwal. Chronic Obstructive Pulmonary Disease. StatPearls – NCBI Bookshelf. (2022); https://www.ncbi.nlm.nih.gov/books/NBK559281/
[60] D. Singh, A. Agusti, A. Anzueto, P. J. Barnes, J. Bourbeau, B. R. Celli, G. J. Criner, P. Frith, D. M. Halpin, M. K. Han, M. Varela, F. J. Martinez, M. M. De Oca, A. Papi, I. D. Pavord, N. Roche, D. D. Sin, R. A. Stockley, J. Vestbo, C. Vogelmeier. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. Eur. Respir. J., 53(2019)1900164. https://doi.org/10.1183/13993003.00164-2019
[61] S. Safiri, K. V. Carson, M. Noori, S. A. Nejadghaderi, M. J. Sullman, J. A. Heris, K. Ansarin, M. A. Mansournia, G. S. Collins, A. Kolahi & J. S. Kaufman. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ., (2022) e069679. https://doi.org/10.1136/bmj-2021-069679
[62] C. J. L. Murray, A. Y. Aravkin, P. Zheng, C. Abbafati, K. Abbas, M. Abbasi-Kangevari, F. Abd-Allah, A. A. Abdelalim, M. Abdollahi, I. Abdollahpour,K. H. Abegaz, H. Abolhassani, V. Aboyans, L. G. Abreu, M. R. Abrigo, A. Abualhasan, L. J. Abu-Raddad, A. I. Abushouk, M. Adabi, S. S. Lim. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet., 396(2020)1223–1249. https://doi.org/10.1016/s0140-6736(20)30752-2
[63] J. R. Hurst, N. Skolnik, G. J. Hansen, A. Anzueto, G. C. Donaldson, M. T. Dransfield, & P. Varghese. Understanding the impact of chronic obstructive pulmonary disease exacerbations on patient health and quality of life. Eur. J. Intern. Med., 73(2020)1–6. https://doi.org/10.1016/j.ejim.2019.12.014
[64] M. A. Changizi, K. Rio. Harnessing color vision for visual oximetry in central cyanosis. Med. Hypotheses., 74(2010)87–91. https://doi.org/10.1016/j.mehy.2009.07.045
[65] A. Fazleen, & T. Wilkinson. Early COPD: current evidence for diagnosis and management. Ther. Adv. Respir. Dis., 14(2020)175346662094212. https://doi.org/10.1177/1753466620942128
[66] T. Nakajima, H. Nakamura, C. A. Owen, S. Yoshida, K. Tsuduki, S. Chubachi, T. Shirahata, S. Mashimo, M. Nakamura, S. Takahashi, N. Minematsu, H. Tateno, S. Fujishima, K. Asano, B. R. Celli, & T. Betsuyaku. Plasma Cathepsin S and Cathepsin S/Cystatin C Ratios Are Potential Biomarkers for COPD. Dis. Markers, (2016)1–9. https://doi.org/10.1155/2016/4093870
[67] S. Sarkar, P. Bhattacharyya, M. Mitra, & S. Pal. A novel approach towards non-obstructive detection and classification of COPD using ECG derived respiration. APESM, 42(2019)1011–1024. https://doi.org/10.1007/s13246-019-00800-2
[68] H. U. R. Siddiqui, A. Raza, A. A. Saleem, F. Rustam, I. De La Torre Díez, D. G. Aray, V. Lipari, I. Ashraf, & S. Dudley. An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features. Diagn., 13(2023)1096. https://doi.org/10.3390/diagnostics13061096
[69] E. Ray, D. Culliford, H. Kruk, K. Gillett, M. North, C. Astles, A. Hicks, M. P. Johnson, S. W. Lin, R. Orlando, M. Thomas, R. Jordan, D. Price, M. Konstantin, & T. Wilkinson. Specialist respiratory outreach: a case-finding initiative for identifying undiagnosed COPD in primary care. NPJ Prim. Care Respir. Med., 31(2021). https://doi.org/10.1038/s41533-021-00219-x
[70] P. D. Scanlon, J. E. Connett, L. A. Waller, M. D. Altose, W. C. Bailey, A. S. Buist & D. P. Tashkin. Smoking Cessation and Lung Function in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 161(2000)381–390. https://doi.org/10.1164/ajrccm.161.2.9901044
[71] J. A. Wedzicha, P. M. Calverley, & K. F. Rabe. Roflumilast: a review of its use in the treatment of COPD. Int J Chron Obstruct Pulmon Dis., (2016)81. https://doi.org/10.2147/copd.s89849
[72] H. N. Tse, L. Raiteri, Y. Wong, K. S. Yee, N.R. J. Gascoigne, K. Wai, C. K. Loo, & K. M. Chan. High-Dose N-Acetylcysteine in Stable COPD. Chest, 144(2013)106–118. https://doi.org/10.1378/chest.12-2357
[73] A. J. Watson, C. Spalluto, C. McCrae, D. Cellura, H. Burke, D. Cunoosamy, A. Freeman, A. Hicks, M. Huhn, K. Ostridge, K. J. Staples, & O. Vaarala. Dynamics of IFN-β Responses during Respiratory Viral Infection. Insights for Therapeutic Strategies. Am. J. Respir. Crit. Care Med., 201(2020)83–94. https://doi.org/10.1164/rccm.201901-0214oc
[74] N. R. Anthonisen. Effects of Smoking Intervention and the Use of an Inhaled Anticholinergic Bronchodilator on the Rate of Decline of FEV1. JAMA, 272(1994)1497. https://doi.org/10.1001/jama.1994.03520190043033
[75] R. Pauwels, C. Löfdahl, L. A. Laitinen, J. S. A. G. Schouten, D. S. Postma, N. B. Pride, & S. V. Ohlsson Long-Term Treatment with Inhaled Budesonide in Persons with Mild Chronic Obstructive Pulmonary Disease Who Continue Smoking. NEJM, 340(1999)1948–1953. https://doi.org/10.1056/nejm199906243402503
[76] M. Candela, R. Costorella, A. Stassaldi, V. Maestrini, G. Curradi. Treatment of COPD: the simplicity is a resolved complexity. Multidiscip. Respir. Med., 14(2019). https://doi.org/10.1186/s40248-019-0181-8
[77] A. N. Da Silva, F. F. Cruz, P. Pelosi, & M. M. Morales. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys. Rev., 9(2017)793–803. https://doi.org/10.1007/s12551-017-0319-x
[78] H. Kato, M. Hagihara, J. Hirai, D. Sakanashi, H. Suematsu, N. Nishiyama, H. Mikamo, Y. Yamagishi, & K. Matsuura. Evaluation of Amikacin Pharmacokinetics and Pharmacodynamics for Optimal Initial Dosing Regimen. Drugs R. D, 17(2017)177–187. https://doi.org/10.1007/s40268-016-0165-5
[79] P. Liu, G. Luo, W. Hu, J. Hua, S. Geng, P. K. Chu, J. Zhang, H. Wang, & X. Yu. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew. Chem. 59(2020)20568–20576. https://doi.org/10.1002/anie.202008379
[80] K. Chikuma, K. Arima, Y. Asaba, R. Kubota, S. Asayama, K. Sato, & H. Kawakami. The potential of lipid-polymer nanoparticles as epigenetic and ROS control approaches for COPD. Free Radic. Res. 54(2020)829–840. https://doi.org/10.1080/10715762.2019.1696965
[81] A. M. Mohamed, A. Muth, I. Saleem, & G. A. Hutcheon. Polymeric nanoparticles for the delivery of miRNA to treat Chronic Obstructive Pulmonary Disease (COPD). Eur. J. Pharm. Biopharm., 136(2019)1–8. https://doi.org/10.1016/j.ejpb.2019.01.002
[82] N. Vij, T. Min, R. E. R. Marasigan, C. N. Belcher, S. Mazur, H. Ding, K. Yong, & I. Roy. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J. Nanobiotechnology., 8(2010)22. https://doi.org/10.1186/1477-3155-8-22
[83] M. Passi, S. Shahid, S. Chockalingam, I. K. Sundar, & P. Gopinath. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine., 15(2020)3803–3826. https://doi.org/10.2147/ijn.s242516
[84] F. Mejza, L. Gnatiuc, A. S. Buist, W. M. Vollmer, B. Lamprecht, D. O. Obaseki, P. Nastałek, E. Nizankowska-Mogilnicka, & P. Burney. Prevalence and burden of chronic bronchitis symptoms: results from the BOLD study. Eur. Respir. J., 50(2017)1700621. https://doi.org/10.1183/13993003.00621-2017
[85] A. Widysanto. Chronic Bronchitis. StatPearls – NCBI Bookshelf. (2022); https://www.ncbi.nlm.nih.gov/books/NBK482437/
[86] A. Ferré, C. Fuhrman, M. Zureik, C. Chouaid, A. Vergnenegre, G. Huchon, M. Delmas, & N. Roche. Chronic bronchitis in the general population: Influence of age, gender and socio-economic conditions. Respir. Med., 106(2012)467–471. https://doi.org/10.1016/j.rmed.2011.12.002
[87] V. Kim, & G. J. Criner. Chronic Bronchitis and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med., 187(2013)228–237. https://doi.org/10.1164/rccm.201210-1843ci
[88] R. Ehrlich, N. J. White, R. J. Norman, R. Laubscher, K. Steyn, C. Lombard, & D. Bradshaw. Predictors of chronic bronchitis in South African adults. IJTLD, 8(2004)369–376. PMID: 15139477.
[89] K. F. Chung, L. McGarvey, W. Song, A. B. Chang, K Lai, B. J. Canning, S. S. Birring, J. A. Smith, & S. B. Mazzone. Cough hypersensitivity and chronic cough. Nat. Rev. Dis. Primers., 8(2022). https://doi.org/10.1038/s41572-022-00370-w
[90] S. Tual, B. Clin, N. Levêque-Morlais, C. Raherison, I. Baldi, & P. Lebailly. Agricultural exposures and chronic bronchitis: findings from the AGRICAN (AGRIculture and CANcer) cohort. Ann. Epidemiol., 23(2013)539–545. https://doi.org/10.1016/j.annepidem.2013.06.005
[91] A. Mamane, I. Baldi, J Tessier, C. Raherison, & G. Bouvier. Occupational exposure to pesticides and respiratory health. ERR, 24(2015)306–319. https://doi.org/10.1183/16000617.00006014
[92] F. J. Kelly, & J. C. Fussell. Air pollution and public health: emerging hazards and improved understanding of risk. Environ. Geochem. Health, 37(2015)631–649. https://doi.org/10.1007/s10653-015-9720-1
[93] M. M. De Oca, R. J. Halbert, M. C. Lopez, R. Pérez-Padilla, C. Tálamo, D. Moreno, A. Muiño, J. R. Jardim, G. Valdivia, J. Pertuzé, & P. C. Hallal. The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur. Respir. J., 40(2012)28–36. https://doi.org/10.1183/09031936.00141611
[94] C. A. R. Martinez, V. Kim, Y. Chen, E. A. Kazerooni, S. Murray, G. J. Criner, J. R. Curtis, E. A. Regan, E. S. Wan, C. P. Hersh, E. K. Silverman, J. D. Crapo, F. J. Martinez, & M. K. Han. The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respir. Med., 108(2014)491–499. https://doi.org/10.1016/j.rmed.2013.11.003
[95] J. Y. Choi, H. K. Yoon, S. Y. Lee, J. Kim, H. J. Choi, Y. Kim, K. S. Jung, K. H. Yoo, W. H. Kim, & C. K. Rhee. Comparison of clinical characteristics between chronic bronchitis and non-chronic bronchitis in patients with chronic obstructive pulmonary disease. BMC Pulm. Med., 22(2022). https://doi.org/10.1186/s12890-022-01854-x
[96] Y. Dotan, J. Y. So, & V. Kim. Chronic Bronchitis: Where Are We Now? COPD, 6(2019)178–192. https://doi.org/10.15326/jcopdf.6.2.2018.0151
[97] P. Sestini, E. Renzoni, S. Robinson, P. Poole, & F. S. F. Ram. Short-acting beta2-agonists for stable chronic obstructive pulmonary disease. The Cochrane Library, (2002); 2010. https://doi.org/10.1002/14651858.cd001495
[98] J. A. Walters, D. J. Tan, C. J. White, P. G. Gibson, R. Wood-Baker, & E. H. Walters. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. The Cochrane Library. (2014); https://doi.org/10.1002/14651858.cd001288.pub4
[99] M. K. Han, N. Tayob, S. Murray, M. T. Dransfield, G. R. Washko, P. D. Scanlon, G. J. Criner, R. Casaburi, J. E. Connett, S. C. Lazarus, R. K. Albert, P. G. Woodruff, & F. J. Martinez. Predictors of Chronic Obstructive Pulmonary Disease Exacerbation Reduction in Response to Daily Azithromycin Therapy. Am. J. Respir. Crit. Care Med., 189(2014)1503–1508. https://doi.org/10.1164/rccm.201402-0207oc
[100] R. K. Albert, J. Connett, W. C. Bailey, R. Casaburi, J. A. Cooper, G. J. Jr, Criner, J. L. Curtis, M. T Dransfield, M. K. Han, S. C. Lazarus, B. Make, N. Marchetti, F. J. Martinez, N. E. Madinger, C. McEvoy, D. E. Niewoehner, J. Porsasz, C. S. Price, J. Reilly, P. D. Scanlon, F. C. Sciurba, S. M. Scharf, G. R. Washko, P. G. Woodruff, N. R. Anthonisen, COPD Clinical Research Network Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 365(2011)689–698. doi: 10.1056/NEJMoa1104623.
[101] P. M. Calverley, K. F. Rabe, U. M. Goehring, S. Kristiansen, L. M. Fabbri, F. J Martinez, Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials, Lancet. 374(2009) 685–694. https://doi.org/10.1016/s0140-6736(09)61255-1
[102] F. J. Martinez, P. M. Calverley, U. Goehring, M. Brose, L. M. Fabbri, K. F. Rabe, Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial, Lancet. 385(2015) 857–866. https://doi.org/10.1016/s0140-6736(14)62410-7
[103] F. J. Martinez, K. F. Rabe, S. Sethi, E. Pizzichini, A. McIvor, A. Anzueto, V. Alagappan, S. S. Siddiqui, L. Rekeda, C. J. Miller, S. Zetterstrand, C. Reisner, S. I. Rennard, Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting β2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE2SPOND). A Randomized Clinical Trial, Am. J. Respir. Crit. Care Med. 194(2016) 559–567. https://doi.org/10.1164/rccm.201607-1349oc
[104] J Chong, B Leung, P Poole, Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease, Cochrane Database Syst Rev. 9(2017) CD002309. https://doi.org/10.1002/14651858.CD002309.pub5
[105] A.Valipour, S. Fernandez-Bussy, A. J. Ing, D. P. Steinfort, G. I. Snell, , J. P. Williamson, T. Saghaie, L. Irving, E. Dabscheck, W. Krimsky, J. R. Waldstreicher, Bronchial Rheoplasty for Treatment of Chronic Bronchitis. Twelve-Month Results from a Multicenter Clinical Trial, Am. J. Respir. Crit. Care Med. 202(2020) 681–689. https://doi.org/10.1164/rccm.201908-1546oc
[106] B. K. Rubin, The pharmacologic approach to airway clearance: mucoactive agents, Respir. Care. 47(2002) 818–822. PMID: 12088552.
[107] M.Cazzola, L. Calzetta, C. P. Page, J. R. Jardim, A. Chuchalin, P.Rogliani, M. G. Matera, Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis, ERR. 24(2015) 451–461. https://doi.org/10.1183/16000617.00002215
[108] Q. Li, S. Huang, H. Wan, H. Wu, T. Zhou, S. D. Minteer, W Deng, Effect of smoking cessation on airway inflammation of rats with chronic bronchitis, Chin. Med. J. 120(2007)1511–1516. https://doi.org/10.1097/00029330-200709010-00009
[109] V. Arkhipov, D. M. Arkhipova, M. Miravitlles, A. Lazarev, E. Y. Stukalina, Characteristics of COPD patients according to GOLD classification and clinical phenotypes in the Russian Federation: the SUPPORT trial, Int J Chron Obstruct Pulmon Dis. 12(2017)3255–3262. https://doi.org/10.2147/copd.s142997
[110] M. Geiser, O. Quaile, A. Wenk, C. Wigge, S. Eigeldinger-Berthou, S. Hirn, M. Schäffler, C. Schleh, W. Möller, M. A. Mall, W. G. Kreyling, Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease, Part. Fibre Toxicol. 10(2013)19. https://doi.org/10.1186/1743-8977-10-19
[111] E. Yu, S. Sharma, Cystic Fibrosis. StatPearls – NCBI Bookshelf. (2022). https://www.ncbi.nlm.nih.gov/books/NBK493206/
[112] W. Poncin, P. Lebecque, L’indice de clairance pulmonaire dans la mucoviscidose. Rev. des Mal. Respir. 36(2019) 377–395. https://doi.org/10.1016/j.rmr.2018.03.007
[113] T. M. Endres, M. W. Konstan, What Is Cystic Fibrosis? JAMA, 327 (2022) 191. https://doi.org/10.1001/jama.2021.23280
[114] Q. Chen, Y. Shen, J. Zheng, A review of cystic fibrosis: Basic and clinical aspects. Animal Models and Experimental Medicine, 4 (2021) 220–232. https://doi.org/10.1002/ame2.12180
[115] J. C. Davies, E. W. Alton, A. Bush, Cystic fibrosis, BMJ. 335(2007)1255–1259. https://doi.org/10.1136/bmj.39391.713229.ad
[116] P. H. Gilligan, Infections in Patients with Cystic Fibrosis, Clin. Lab. Med. 34(2014) 197–217. https://doi.org/10.1016/j.cll.2014.02.001
[117] S. Link, R. P. Nayak, Review of Rapid Advances in Cystic Fibrosis, Mo Med, 117(2020) 548–554. PMID: 33311787; PMCID: PMC7721430.
[118] A. M Coverstone, P. D. Sly, Early Diagnosis and Intervention in Cystic Fibrosis: Imagining the Unimaginable, Front Pediatr. 8 (2021) https://doi.org/10.3389/fped.2020.608821
[119] P. A. Flume, K. A. Robinson, B. O’Sullivan, J. D. Finder, R. L. Vender, D. B.Willey-Courand, T. B. White, B. C. Marshall, Cystic fibrosis pulmonary guidelines: airway clearance therapies, Respir. Care. 4 (2009) 522–537.
[120] M. R.Morrell, J. M. Pilewski, Lung Transplantation for Cystic Fibrosis, Clin. Chest Med. 37(2016)127–138. https://doi.org/10.1016/j.ccm.2015.11.008
[121] C. L. Hardee, L. M. Arevalo-Soliz, B. D. Hornstein, L. Zechiedrich, Advances in Non-Viral DNA Vectors for Gene Therapy, Genes. 8 (2017) 65. https://doi.org/10.3390/genes8020065
[122] M. W. Konstan, P. B. Davis, J. S.Wagener, K. A. Hilliard, R. S. Stern, , L. J. H. Milgram, T. Kowalczyk, S. L. Hyatt, T. L. Fink, C. R. Gedeon, S. M. Oette, J. L. Payne, O. Muhammad, A. G. Ziady, R. C. Moen, M. E. Cooper, Compacted DNA Nanoparticles Administered to the Nasal Mucosa of Cystic Fibrosis Subjects Are Safe and Demonstrate Partial to Complete Cystic Fibrosis Transmembrane Regulator Reconstitution, HGT. 15(2004) 1255–1269. https://doi.org/10.1089/hum.2004.15.1255
[123] E. W. Alton, D. G. Armstrong, D. Ashby, K. J.Bayfield, D. Bilton, E. V. Bloomfield, A. W. Boyd, J. Brand, R. Buchan, R. Calcedo, P. Carvelli, M. Chan, S. H. Cheng, D. Collie, S. Cunningham, H. A. Davidson, G. A. Davies, J. C. Davies, L. A Davies, P. Wolstenholme-Hogg, Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial, Lancet Respir. Med. 3(2015) 684–691. https://doi.org/10.1016/s2213-2600(15)00245-3
[124] E. Robinson, K. D. MacDonald, K. Slaughter, M. McKinney, S. M. Patel, C. Sun, G. Sahay, Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis, Mol. Ther. 26(2018) 2034–2046. https://doi.org/10.1016/j.ymthe.2018.05.014
[125] A. K. M. A. Haque, A. Dewerth, J. S. Antony, J. Riethmüller, G. R. Schweizer, P. Weinmann, N. Latifi, H. Yasar, N. Pedemonte, E.Sondo, B.Weidensee, A. Ralhan, J. Laval, P. Schlegel, C. Seitz, B. Loretz, C. Lehr, R. Handgretinger, M. S. D Kormann, Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-34960-0
[126] A. D. Tagalakis, M. M. Munye, R. Ivanova, H. Chen, C. Smith, A. Aldossary, L. Rosa, D. Moulding, J. Barnes, K. N. Kafetzis, S. E. Jones, D. L. Baines, G. W. J Moss, C.O’ Callaghan, R. J. McAnulty, S. D. Hart, Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung, Thorax. 73(2018) 847–856. https://doi.org/10.1136/thoraxjnl-2017-210670
[127] G. Osman, J. D. Rodriguez, S. L. Chan, J. Chisholm, G. A Duncan, N. Kim, A. L. Tatler, K. M. Shakesheff, J. Hanes, J. S. Suk, J. R. Dixon, PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy, JCR. 285 (2018) 35–45. https://doi.org/10.1016/j.jconrel.2018.07.001
[128] H. D. C. Smyth, X. Peng, X. Liu, D. Arasappan, D. Wylie, S. Schwartz, J. J. Fullmer, B. C. McWilliams, D. Ghosh, Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery, JCR. 322, (2020) 457–469. https://doi.org/10.1016/j.jconrel.2020.03.032
[129] O. B.Garbuzenko, N. Kbah, A. Kuzmov, N. Pogrebnyak, V. P. Pozharov, T. Minko, Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers, JCR. 296 (2019) 225–231. https://doi.org/10.1016/j.jconrel.2019.01.025
[130] N. G.Türeli, A. Torge, J. Juntke, B. Schwarz, N. Schneider-Daum, A. E. Türeli, C. Lehr, M. Schneider, Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm. 117 (2017) 363–371. https://doi.org/10.1016/j.ejpb.2017.04.032
[131] J. Ernst, M. Klinger-Strobel, K. Arnold, J. Thamm, A. Hartung, M.W. Pletz, O. Makarewicz, & D. Fischer, Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions, Eur. J. Pharm. Biopharm. 131(2018)120–129. https://doi.org/10.1016/j.ejpb.2018.07.025
[132] WHO: Pneumonia in children, (2023), Available online. https://www.who.int/news-room/fact-sheets/detail/pneumonia
[133] C.C. Chou, C. F. Shen, S. J. Chen, H. M. Chen, Y. C. Wang, W. S. Chang, Y. T. Chang, W. Y. Chen, C. Y. Huang, C. C. Kuo, et al, Recommendations and guidelines for the treatment of pneumonia in Taiwan, J. Microbiol. Immunol. Infect. 52(2019) 172–199. doi: 10.1016/j.jmii.2018.11.004.
[134] O. Henig, K. S. Kaye, Bacterial Pneumonia in Older Adults, Infect. Dis. Clin. N. Am. 31(2017) 689–713. doi: 10.1016/j.idc.2017.07.015
[135] S. Pakhale, S. Mulpuru, T. J. Verheij, M. M. Kochen, G. G. Rohde, L. M. Bjerre, Antibiotics for community-acquired pneumonia in adult outpatients, Cochrane Database Syst. Rev. 10(2014) CD002109. DOI: 10.1002/14651858.CD002109.pub4.
[136] W. Muhammad, Z. Zhai, S. Wang, C. Gao, Inflammation-modulating nanoparticles for pneumonia therapy, Wiley Interdiscip Rev Nanomed Nanobiotechnol. 14(2022) e1763. doi: 10.1002/wnan.1763.
[137] C. Bao, B. Liu, B. Li, J. Chai, L. Zhang, L. Jiao, D. Li, Z. Yu, F. Ren, X. Shi, et al, Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers, Nano Lett. 20(2020)1352–1361. doi: 10.1021/acs.nanolett.9b04841
[138] R. Lima, F. S. Del Fiol, V. M. Balcão, Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria, Front. Pharmacol. 10(2019)692. https://doi.org/10.3389/fphar.2019.00692.
[139] Z. Huang, S. N. Kłodzińska, F. Wan, H. M. Nielsen, Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections, Drug Deliv Transl Res. 11(2021)1634-1654. doi: 10.1007/s13346-021-00954-1.
[140] J. Tang, Q. Ouyang, Y. Li, P. Zhang, W. Jin, S. Qu, F. Yang, Z. He, M. Qin. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia, Int. J. Mol. Sci. 23(2022)15738. https://doi.org/10.3390/ijms232415738
[141] V. Kumar, A. K. Abbas, N. Fausto, and R. N. Mitchell, Robbins Basic Pathology, Saunder Elsevier, 8(2007).
[142] A. M. Cooper, Cell-mediated immune responses in tuberculosis, Annu. Rev. Immunol. 27(2009)393–422.
[143] K. Rohde, R. M. Yates, G. E. Purdy, and D. G. Russell, Mycobacterium tuberculosis and the environment within the phagosome, Immunol. Rev. 219(2007) 37–54. https://doi.org/10.1111/j.1600-065X.2007.00547.x
[144] G. R. Stewart, B. D. Robertson, and D. B. Young, Tuberculosis: a problem with persistence, Nat. Rev. Microbiol., 1(2003) 97–105. https://doi.org/10.1038/nrmicro749.
[145] WHO Global Tuberculosis Control Report 2010, Summary, Cent. Eur. J. Public Health. 18(2010) 237.
[146] T. R. Frieden, T. R. Sterling, S. S. Munsiff, C. J. Watt, and C. Dye, Tuberculosis, Lancet, 362(2003)887–899. DOI:https://doi.org/10.1016/j.ccm.2005.02.001
[147] D. J. Morgan, L. McLain, and N. J. Dimmock, WHO declares tuberculosis a global emergency, Soz. Praventivmed. 38(1993)251–252. https://doi.org/10.1007/BF01624546.
[148] D. Bhowmik, R. M. Chiranjib, B. Jayakar, and K. P. S. Kumar, Recent trends of drug used treatment of tuberculosis, J. Chem. Pharm. Res., 1(2009)113– 133.
[149] M. A. Moretton, R. J. Glisoni, D. A. Chiappetta, and A. Sosnik, Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles, Colloids Surf. B, 79(2010)467–479. https://doi.org/10.1016/j.colsurfb.2010.05.016
[150] Lalloo, U. G., Ambaram, A, New antituberculous drugs in development. Current HIV/AIDS reports, 7 (2010), 143–151. https://doi.org/10.1007/s11904-010-0054-4
[151] B. N. V. Hari, K. P. Chitra, R. Bhimavarapu, P. Karunakaran, N. Muthukrishnan, and B. S. Rani, Novel technologies: a weapon against tuberculosis, Indian J. Pharmacol., 42(2010)338–344. DOI: 10.4103/0253-7613.71887
[152] A.Sosnik, A. M. Carcaboso, R. J. Glisoni, M. A. Moretton, and ´ D. A. Chiappetta, New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery, Adv. Drug Deliv. Rev. 62(2010) 547–559. https://doi.org/10.1016/j.addr.2009.11.023.
[153] W. A. Ritschel, “Microemulsions for improved peptide absorption from the gastrointestinal tract, Meth. And Find Exp. Clin. Pharamcol.13(1991) 205– 220.
[154] J. M. Sarciaux, L. Acar, and P. A. Sado, Using microemulsion formulations for oral drug delivery of therapeutic peptides,
Int. J. Pharm. 120(1995)127– 136. https://doi.org/10.1016/0378-5173(94)00386.
[155] Elalccleston,G. M. Microemulsions, in Encyclopedia of Pharmaceutical Technology, J. Swarbrick and J. C. Boylan, Eds., Marcel Dekker, New York, NY, USA, 9(1992)375–42.
[156] C. Song, D. Yu, Y. Wang, Q. Wang, Z. Guo, J. Huang, S. Li, W. Hu. Dual Primary Cancer Patients with Lung Cancer as a Second Primary Malignancy: A Population-Based Study, Front. Oncol. 10(2020)515606. https://doi.org/10.3389/fonc.2020.515606.
[157] S. Mukherjee, C. R. Patra. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 8(2016)12444–12470. doi: 10.1039/C5NR07887C.
[158] H. J. Burstein, R. S. Schwartz. Molecular origins of cancer. N. Engl. J. Med. 358(2008)527. doi: 10.1056/NEJMe0800065.
[159] M. K. Paul, A. K. Mukhopadhyay. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 1(2004)101–115. doi: 10.7150/ijms.1.101.
[160] M. Jamal-Hanjani, G. A. Wilson, N. McGranahan, N. J. Birkbak, T. B. K. Watkins, S. Veeriah, S. Shafi, D. H. Johnson, R. Mitter, R. Rosenthal, et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 376(2017) 2109–2121. doi: 10.1056/NEJMoa1616288.
[161] R. S. Herbst, D. Morgensztern, C. Boshoff. The biology and management of non-small cell lung cancer. Nature, 553(2018) 446–454. https://doi.org/10.1038/nature25183
[162] M. Nicolson. ES05.01 Lung Cancer Survival: Progress and Challenges. J. Thorac. Oncol., 14(2019)S24. DOI:https://doi.org/10.1016/j.jtho.2019.08.087.
[163] R. M. DiSanto, V. Subramanian, Z. Gu. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2015)548–564. doi: 10.1002/wnan.1329.
[164] X. Yue, Z. Dai. Liposomal Nanotechnology for Cancer Theranostics. Curr. Med. Chem. 25(2018) 1397–1408. doi: 10.2174/0929867324666170306105350.
[165] Y. Matsumura, H. Maeda. A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy—Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 46(1986) 6387–6392.
[166] A. Mukherjee, M. Paul, S. Mukherjee. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel). 11(2019) 597. doi: 10.3390/cancers11050597. PMID: 31035440; PMCID: PMC6562381.
[167] S. Li, S. Xu, X. Liang, Y. Xue, J. Mei, Y. Ma, Y. Liu. Nanotechnology: Breaking the Current Treatment Limits of Lung Cancer. Adv. Health Mater. 10(2021) 2100078. https://doi.org/10.1016/j.apsb.2021.04.023
[168] R. Baskaran, J. Lee, S. G. Yang. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 22(2018) 25. doi: 10.1186/s40824-018-0140-z.
[169] H. Kato, T. Horai, K. Furuse, M. Fukuoka, S. Suzuki, Y. Hiki, Y. Ito, S. Mimura, Y. Tenjin, H. Hisazumi, et al. Photodynamic therapy for cancers: A clinical trial of porfimer sodium in Japan. Jpn. J. Cancer Res. 84(1993) 1209–1214. doi: 10.1111/j.1349-7006.1993. tb02823.x.
[170] C. Lin, X. Zhang, H. Chen, Z. Bian, G. Zhang, M. K. Riaz, D. Tyagi, G. Lin, Y. Zhang, J. Wang, et al. Dual-Ligand Modified Liposomes Provide Effective Local Targeted Delivery of Lung-Cancer Drug by Antibody and Tumor Lineage-Homing Cell-Penetrating Peptide, Drug Deliv. 25(2018) 256–266. doi: 10.1080/10717544.2018.1425777.
[171] M. Doroudian, A. Neill, R. Mac Loughlin, A. Prina-Mello, Y. Volkov, & S. C. Donnelly. Nanotechnology in pulmonary medicine. COPHAR, 56(2021) 85–92. https://doi.org/10.1016/j.coph.2020.11.002
[172] Q. Qiao, X. Liu, T. Yang, K. Cui, L. Kong, C. Yang, Z. Zhang, Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design, APSB B, 11(2021) 3060-3091.
[173] J. Xie, L. Liu, Y. Yang, W. Yu, M. Li, K. Yu, R. Zheng, J. Yan, X. Wang, G. Cai, J. Li, Q. Gu, H. Zhao, X. Mu, X. Ma, H. Qiu, A modified acute respiratory distress syndrome prediction score: a multicenter cohort study in China, J. Thorac. Dis. 10(2018) 5764–5773. doi:10.21037/jtd.2018.09.117.
[174] B. T. Thompson, G. R. Bernard. ARDS network (NHLBI) studies: successes and challenges in ARDS clinical research, Crit. Care Clin. 27(2011) 459–468. doi: 10.1016/j.ccc.2011.05.011.
[175] M. A. Matthay, R. L. Zemans, G. A. Zimmerman, Y. M. Arabi, J. R. Beitler, A. Mercat, M. Herridge, A. G. Randolph, C. S. Calfee, Acute respiratory distress syndrome, Nat. Rev. Dis. Prim. 5(2018) 13. https://doi.org/10.1038/s41572-019-0069-0
[176] T. A. P. F. Doll, R. Dey, P. Burkhard. Design and optimization of peptide nanoparticles, J. Nanobiotechnology. 13(2015). doi: 10.1186/s12951-015-0119-z.
[177] J. S. Brenner. Nanomedicine for the treatment of acute respiratory distress syndrome: the 2016 ATS Bear cage award-winning proposal. Ann. Am. Thorac. Soc. 14(2017) 561–564. doi: 10.1513/AnnalsATS.201701-090PS.
[178] S. Tarvirdipour, C. A. Schoenenberger, Y. Benenson, C. G. Palivan. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. Soft Matter. 16(2020) 1678–1691. doi: 10.1039/c9sm01990a.
[179] P. N. Navya, H. K. Daima. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives, Nano Converg. 3(2016). doi: 10.1186/s40580-016-0064-z.
[180] H. M. Mansour, Y. S. Rhee, X. Wu. Nanomedicine in pulmonary delivery, Int. J. Nanomedicine. 4(2009) 299–319. doi: 10.2147/ijn.s4937.
[181] R. T. Sadikot, Peptide nanomedicines for treatment of acute lung injury, Methods Enzymol. 508(2012) 315–324. doi: 10.1016/B978-0-12-391860-4.00016-1.
[182] R. T. Sadikot, The potential role of nano- and micro-technology in the management of critical illnesses, Adv Drug Deliv Rev. 77(2014) 27-31.
[183] I. Roy, N. Vij. Nanodelivery in airway diseases: challenges and therapeutic applications, Nanomedicine Nanotechnology. Biol. Med. 6(2010) 237–244. doi: 10.1016/j.nano.2009.07.001.
[184] O. S. Thomas, W. Weber, Overcoming physiological barriers to nanoparticle delivery—are we there yet? Front. Bioeng. Biotechnol. 7(2019). doi: 10.3389/fbioe.2019.00415.