Application of MXenes in Photodetectors

$30.00

Application of MXenes in Photodetectors

Anupam Patel, Rajendra Kumar Singh

Photodetectors are semiconductor devices with photoelectric conversion functions that play a significant part in many fields, including UV radiation skin sensors, biological sensing, optical communication, biomedical sensing, etc. Scientists are interested in 2D materials because of their great physical, chemical, thermal, and flexibility qualities, nano-sized thickness, and outstanding electronic and optical capabilities. A novel class of 2D materials called MXenes contains carbon nitrides, transition metals carbides, and nitrides. MXenes have numerous advantages including excellent structural thermal stability, higher conductivity, excellent optical properties, etc. Therefore, MXenes are extensively attractive to the application fields of the photodetector.

Keywords
2D Materials, MXenes, Electronic and Optical Properties, Photodetector

Published online 12/15/2023, 22 pages

Citation: Anupam Patel, Rajendra Kumar Singh, Application of MXenes in Photodetectors, Materials Research Foundations, Vol. 155, pp 81-102, 2024

DOI: https://doi.org/10.21741/9781644902875-4

Part of the book on Recent Advances and Allied Applications of Mxenes

References
[1] C. Xie, F. Yan, Flexible photodetectors based on novel functional materials, Small. 13 (2017) 1-36. https://doi.org/10.1002/smll.201701822
[2] K. Zhang, L. Zhang, L. Han, L. Wang, Z. Chen, H. Xing, X. Chen, Recent progress and challenges based on two-dimensional material photodetectors, Nano Express. 2 (2021) 012001. https://doi.org/10.1088/2632-959X/abd45b
[3] T. Dong, J. Simões, Z. Yang, Flexible photodetector based on 2D Materials: Processing, architectures, and applications, Adv. Mater. Interfaces. 7 (2020) 1-18. https://doi.org/10.1002/admi.201901657
[4] L. Zheng, L. Zhongzhu, S. Guozhen, Photodetectors based on two dimensional materials, J. Semicond. 37 (2016). https://doi.org/10.1088/1674-4926/37/9/091001
[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2016) 666-669. https://doi.org/10.1126/science.1102896
[6] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191. https://doi.org/10.1038/nmat1849
[7] N. Ashraf, M. khan, A. Majid, M. Rafique, M.B. Tahir, A review of the interfacial properties of 2-D materials for energy storage and sensor applications, Chinese J. Phys. 66 (2020) 246-257. https://doi.org/10.1016/j.cjph.2020.03.035
[8] H. Zhu, J. Suhr, R. Ma, An overview of two-dimensional materials, J. Mater. 4 (2018) 81-82. https://doi.org/10.1016/j.jmat.2018.05.004
[9] H. Cui, Y. Guo, W. Ma, Z. Zhou, 2 D Materials for electrochemical energy storage: Design, preparation, and application, ChemSusChem. 13 (2020) 1155-1171. https://doi.org/10.1002/cssc.201903095
[10] W. Zheng, Y. Jiang, X. Hu, H. Li, Z. Zeng, X. Wang, A. Pan, Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications, Adv. Opt. Mater. 6 (2018) 1-29. https://doi.org/10.1002/adom.201800420
[11] H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res. 9 (2016) 1543-1560. https://doi.org/10.1007/s12274-016-1034-9
[12] Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.F. Jiang, H. Zhang, S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5 (2015) 1-12. https://doi.org/10.1038/srep16372
[13] Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, F. Chen, Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: Optical evidence and photonic applications, ACS Photonics. 4 (2017) 1531-1538. https://doi.org/10.1021/acsphotonics.7b00296
[14] K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics. 10 (2016) 216-226. https://doi.org/10.1038/nphoton.2015.282
[15] Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, H. Zhang, All-optical phosphorene phase modulator with enhanced stability under ambient conditions, Laser Photonics Rev. 12 (2018) 1-9. https://doi.org/10.1002/lpor.201800016
[16] S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, H. Zhang, Graphene/phosphorene nano-heterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance, Photonics Res. 5 (2017) 662. https://doi.org/10.1364/PRJ.5.000662
[17] J. Zhao, D. Ma, C. Wang, Z. Guo, B. Zhang, J. Li, G. Nie, N. Xie, H. Zhang, Recent advances in anisotropic two-dimensional materials and device applications, Nano Res. 14 (2021) 897-919. https://doi.org/10.1007/s12274-020-3018-z
[18] J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices, Adv. Mater. 28 (2016) 4861-4869. https://doi.org/10.1002/adma.201600225
[19] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[20] Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang, L. Xia, S. Ma, Z. Yin, R. Wang, Y. Cao, Z. Li, Y. Huang, The recent progress of MXene-Based microwave absorption materials, Carbon N. Y. 174 (2021) 484-499. https://doi.org/10.1016/j.carbon.2020.12.060
[21] B.M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res. 12 (2019) 471-487. https://doi.org/10.1007/s12274-018-2225-3
[22] L. Verger, C. Xu, V. Natu, H.M. Cheng, W. Ren, M.W. Barsoum, Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides, Curr. Opin. Solid State Mater. Sci. 23 (2019) 149-163. https://doi.org/10.1016/j.cossms.2019.02.001
[23] B. Wang, S. Zhong, P. Xu, H. Zhang, Booming development and present advances of two-dimensional MXenes for photodetectors, Chem. Eng. J. 403 (2021) 126336. https://doi.org/10.1016/j.cej.2020.126336
[24] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano. 6 (2012) 1322-1331. https://doi.org/10.1021/nn204153h
[25] C.E. Ren, M.Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M.W. Barsoum, Y. Gogotsi, Porous two-dimensional transition metal carbide (MXene) flakes for high-performance li-ion storage, ChemElectroChem. 3 (2016) 689-693. https://doi.org/10.1002/celc.201600059
[26] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, P.R.C. Kent, Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136 (2014) 6385-6394. https://doi.org/10.1021/ja501520b
[27] Z. Liu, H.N. Alshareef, MXenes for optoelectronic devices, Adv. Electron. Mater. 7 (2021) 1-28. https://doi.org/10.1002/aelm.202100295
[28] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang, Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH), Laser Photonics Rev. 12 (2018) 1-10. https://doi.org/10.1002/lpor.201700229
[29] Y.I. Jhon, M. Seo, Y.M. Jhon, First-principles study of a MXene terahertz detector, Nanoscale. 10 (2018) 69-75. https://doi.org/10.1039/C7NR05351G
[30] W. Deng, H. Huang, H. Jin, W. Li, X. Chu, D. Xiong, W. Yan, F. Chun, M. Xie, C. Luo, L. Jin, C. Liu, H. Zhang, W. Deng, W. Yang, All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication, Adv. Opt. Mater. 7 (2019) 1-9. https://doi.org/10.1002/adom.201801521
[31] D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin, M.N. Hedhili, A.E. Mansour, E. Di Fabrizio, O.F. Mohammed, H.N. Alshareef, MXenes for plasmonic photodetection, Adv. Mater. 31 (2019) 1-10. https://doi.org/10.1002/adma.201807658
[32] T. Hu, Z. Li, M. Hu, J. Wang, Q. Hu, Q. Li, X. Wang, Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study, J. Phys. Chem. C. 121 (2017) 19254-19261. https://doi.org/10.1021/acs.jpcc.7b05675
[33] М. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, А. Pogrebnjak, Mxenes-A new class of two-dimensional materials: Structure, properties and potential applications, Nanomaterials. 11 (2021) 1123412. https://doi.org/10.3390/nano11123412
[34] P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene, ACS Appl. Mater. Interfaces. 8 (2016) 24256-24264. https://doi.org/10.1021/acsami.6b08413
[35] M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: A theoretical review, J. Mater. Chem. C. 5 (2017) 2488-2503. https://doi.org/10.1039/C7TC00140A
[36] G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene, Epl. 111 (2015) 67002. https://doi.org/10.1209/0295-5075/111/67002
[37] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance, Nature. 516 (2015) 78-81. https://doi.org/10.1038/nature13970
[38] F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu, Q. Huang, A. Zhou, Preparation of high-purity V2C MXene and electrochemical properties as li-ion batteries , J. Electrochem. Soc. 164 (2017) A709-A713. https://doi.org/10.1149/2.0641704jes
[39] F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu, Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci. 416 (2017) 781-789. https://doi.org/10.1016/j.apsusc.2017.04.239
[40] J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater. 26 (2014) 2374-2381. https://doi.org/10.1021/cm500641a
[41] M. Serhan, M. Sprowls, D. Jackemeyer, M. Long, I.D. Perez, W. Maret, N. Tao, E. Forzani, Total iron measurement in human serum with a smartphone, AIChE Annu. Meet. Conf. Proc. 2019. https://doi.org/10.1109/JTEHM.2020.3005308
[42] J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng, X. Yang, Z. Liu, R. Ma, T. Sasaki, F. Geng, Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance, Angew. Chemie. 128 (2016) 14789-14794. https://doi.org/10.1002/ange.201606643
[43] S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride‐free synthesis of two‐dimensional titanium carbide (MXene) using a binary aqueous system, Angew. Chemie. 130 (2018) 15717-15721. https://doi.org/10.1002/ange.201809662
[44] W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CT:X (MXene) in low-concentration hydrochloric acid solution, J. Mater. Chem. A. 5 (2017) 21663-21668. https://doi.org/10.1039/C7TA05574A
[45] M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.Å. Persson, S. Du, Z. Chai, Z. Huang, Q. Huang, Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX Phases and MXenes, J. Am. Chem. Soc. 141 (2019) 4730-4737. https://doi.org/10.1021/jacs.9b00574
[46] L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang, Q. Hu, A. Zhou, B. Liu, Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process, Electron. Mater. Lett. 12 (2016) 702-710. https://doi.org/10.1007/s13391-016-6088-z
[47] T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment, Angew. Chemie – Int. Ed. 57 (2018) 6115-6119. https://doi.org/10.1002/anie.201800887
[48] Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang, C. Zhi, Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging, Adv. Mater. 29 (2017) 1-6. https://doi.org/10.1002/adma.201604847
[49] B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: Tunable mechanical and tribological properties, Adv. Mater. 2007973 (2021) 1-15. https://doi.org/10.1002/adma.202007973
[50] T. Review, O. Access, Physical properties of 2D MXenes : From a theoretical perspective, J. Phys. : Mater. 3 (2021) 032006. https://doi.org/10.1088/2515-7639/ab97ee
[51] M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2 (2012) 133-137. https://doi.org/10.1557/mrc.2012.25
[52] M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene), Adv. Mater. 28 (2016) 1517-1522. https://doi.org/10.1002/adma.201504705
[53] S. Nam, S. Umrao, S. Oh, I. Oh, 2D layered Ti3C2Tx negative electrode-based activated carbon woven, 32 (2019) 296-300.
[54] N.N. Wang, H. Wang, Y.Y. Wang, Y.H. Wei, J.Y. Si, A.C.Y. Yuen, J.S. Xie, B. Yu, S.E. Zhu, H.D. Lu, W. Yang, Q.N. Chan, G.H. Yeoh, Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation, ACS Appl. Mater. Interfaces. 11 (2019) 40512-40523. https://doi.org/10.1021/acsami.9b14265
[55] Y. Ibrahim, A. Mohamed, A.M. Abdelgawad, K. Eid, A.M. Abdullah, A. Elzatahry, The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: Deep insights into the supercapacitor, Nanomaterials. 10 (2020) 1-27. https://doi.org/10.3390/nano10101916
[56] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017). https://doi.org/10.1038/natrevmats.2016.98
[57] M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23 (2013) 2185-2192. https://doi.org/10.1002/adfm.201202502
[58] J.A. Kumar, P. Prakash, T. Krithiga, D.J. Amarnath, J. Premkumar, N. Rajamohan, Y. Vasseghian, P. Saravanan, M. Rajasimman, Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review, Chemosphere. 286 (2022) 131607. https://doi.org/10.1016/j.chemosphere.2021.131607
[59] C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance, Adv. Mater. 29 (2017) 1-9. https://doi.org/10.1002/adma.201702678
[60] K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mater. 2 (2016) 1-7. https://doi.org/10.1002/aelm.201600050
[61] M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M′= Mo, W; M″=Ti, Zr, Hf), Phys. Rev. B. 94 (2016) 1-9. https://doi.org/10.1103/PhysRevB.94.125152
[62] Y. Liang, M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Y. Kawazoe, H. Weng, Z. Fang, Theoretical prediction of two-dimensional functionalized MXene nitrides as topological insulators, Phys. Rev. B. 96 (2017) 1-9. https://doi.org/10.1103/PhysRevB.96.195414
[63] C. Si, K.H. Jin, J. Zhou, Z. Sun, F. Liu, Large-gap quantum spin hall state in MXenes: D-band topological order in a triangular lattice, Nano Lett. 16 (2016) 6584-6591. https://doi.org/10.1021/acs.nanolett.6b03118
[64] X. Gao, Z. Jia, B. Wang, X. Wu, T. Sun, X. Liu, Q. Chi, G. Wu, Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J. 419 (2021) 130019. https://doi.org/10.1016/j.cej.2021.130019
[65] H. An, T. Habib, S. Shah, H. Gao, M. Radovic, Surface-agnostic highly stretchable and bendable conductive MXene multilayers, Sci. Adv. 4 (2018) 1-9. https://doi.org/10.1126/sciadv.aaq0118
[66] J. Zhou, X.H. Zha, M. Yildizhan, P. Eklund, J. Xue, M. Liao, P.O.Å. Persson, S. Du, Q. Huang, Two-dimensional hydroxyl-functionalized and carbon-deficient scandium carbide, ScCxOH, a direct band gap semiconductor, ACS Nano. 13 (2019) 1195-1203. https://doi.org/10.1021/acsnano.8b06279
[67] Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng, N. Liu, L. Li, Z. Zou, X. Jiang, T. Zhai, Y. Gao, MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors, Adv. Electron. Mater. 3 (2017) 1-7. https://doi.org/10.1002/aelm.201700165
[68] Z. Kang, Z. Zheng, H. Wei, Z. Zhang, X. Tan, L. Xiong, T. Zhai, Y. Gao, Controlled growth of an Mo2C-graphene hybrid film as an electrode in self-powered two-sided Mo2C-graphene/Sb2S0.42Se2.58 /TiO2 photodetectors, Sensors (Switzerland). 19 (2019) 1-11. https://doi.org/10.3390/s19051099
[69] M. Li, H. Wang, X. Wang, Q. Lu, H. Li, Y. Zhang, S. Yao, Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose, Biosens. Bioelectron. 142 (2019) 111535. https://doi.org/10.1016/j.bios.2019.111535
[70] Y. Yang, J. Jeon, J.H. Park, M.S. Jeong, B.H. Lee, E. Hwang, S. Lee, Plasmonic transition metal carbide electrodes for high-performance InSe photodetectors, ACS Nano. 13 (2019) 8804-8810. https://doi.org/10.1021/acsnano.9b01941
[71] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. https://doi.org/10.1021/ja405735d
[72] C. Peng, P. Wei, X. Chen, Y. Zhang, F. Zhu, Y. Cao, H. Wang, H. Yu, F. Peng, A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance, Ceram. Int. 44 (2018) 18886-18893. https://doi.org/10.1016/j.ceramint.2018.07.124
[73] M.H. Tran, T. Schäfer, A. Shahraei, M. Dürrschnabel, L.M. Luna, U.I. Kramm, C.S. Birkel, Adding a new member to the MXene family: Synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx, ACS Appl. Energy Mater. 1 (2018) 3908-3914. https://doi.org/10.1021/acsaem.8b00652
[74] F. Chang, C. Li, J. Yang, H. Tang, M. Xue, Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2, Mater. Lett. 109 (2013) 295-298. https://doi.org/10.1016/j.matlet.2013.07.102
[75] E. Kayali, A. Vahidmohammadi, J. Orangi, M. Beidaghi, Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage, ACS Appl. Mater. Interfaces. 10 (2018) 25949-25954. https://doi.org/10.1021/acsami.8b07397
[76] H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes, Chem. Mater. 29 (2017) 6472-6479. https://doi.org/10.1021/acs.chemmater.7b02056
[77] J. Yang, M. Naguib, M. Ghidiu, L.M. Pan, J. Gu, J. Nanda, J. Halim, Y. Gogotsi, M.W. Barsoum, Two-dimensional Nb-based M4C3 solid solutions (MXenes), J. Am. Ceram. Soc. 99 (2016) 660-666. https://doi.org/10.1111/jace.13922
[78] A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes, Adv. Electron. Mater. 2 (2016). https://doi.org/10.1002/aelm.201600255
[79] J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater. 27 (2017) 1-10. https://doi.org/10.1002/adfm.201701264
[80] X. Zhang, Y. Liu, S. Dong, J. Yang, X. Liu, Surface modified MXene film as a flexible electrode with ultrahigh volumetric capacitance, Electrochim. Acta. 294 (2019) 233-239. https://doi.org/10.1016/j.electacta.2018.10.096
[81] K. Maleski, C.E. Ren, M.Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes, ACS Appl. Mater. Interfaces. 10 (2018) 24491-24498. https://doi.org/10.1021/acsami.8b04662
[82] J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P.A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi, J.M. Razal, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity, Adv. Mater. 32 (2020) 1-9. https://doi.org/10.1002/adma.202001093
[83] G. Ying, A.D. Dillon, A.T. Fafarman, M.W. Barsoum, Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films, Mater. Res. Lett. 5 (2017) 391-398. https://doi.org/10.1080/21663831.2017.1296043
[84] F. Du, H. Tang, L. Pan, T. Zhang, H. Lu, J. Xiong, J. Yang, C. Zhang, Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries, Electrochim. Acta. 235 (2017) 690-699. https://doi.org/10.1016/j.electacta.2017.03.153
[85] J. Jeon, H. Choi, S. Choi, J.H. Park, B.H. Lee, E. Hwang, S. Lee, Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection, Adv. Funct. Mater. 29 (2019) 1-7. https://doi.org/10.1002/adfm.201905384
[86] K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum, B. Nabet, Beyond gold: Spin-coated Ti3C2-based MXene photodetectors, Adv. Mater. 31 (2019) 1-9. https://doi.org/10.1002/adma.201903271