MXenes for Nanophotonics
Sabahat Urossha, S.S. Ali
Considerable attention has been paid to Mxenes which is a novel group of two-dimensional materials. Exceptional 2D layered microstructures make this family quite attractive for potential applications in a number of photoelectric applications along with their nonlinear optical and short electronic transport characteristics. This 2D group of materials comprises of transition metal carbides, carbonitrides, and nitrides having formula Mn+1Xn (where M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc., and X = C and/or N). Owing to some unmatched features of Mxenes like hydrophilic surfaces and high conductivities (~6000–8000 S/cm), these can be implemented in potential applications such as catalysis, energy storage, and field effect transistors etc.
Keywords
MXene, 2D Materials, Non-Linear Optical Behavior, Optoelectronic Properties, Photodetectors, Light Emitting Diodes
Published online 12/15/2023, 33 pages
Citation: Sabahat Urossha, S.S. Ali, MXenes for Nanophotonics, Materials Research Foundations, Vol. 155, pp 48-80, 2024
DOI: https://doi.org/10.21741/9781644902875-3
Part of the book on Recent Advances and Allied Applications of Mxenes
References
[1] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[2] K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater. 30 (2018) 1804779. https://doi.org/10.1002/adma.201804779
[3] M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48 (2015) 128-135. https://doi.org/10.1021/ar500346b
[4] M.W. Barsoum, The MN+1AXN phases: A new class of solids: Thermodynamically stable nano laminates, Prog. Solid State Chem. 28 (2000) 201-281. https://doi.org/10.1016/S0079-6786(00)00006-6
[5] M. Kurtoglu, M. Naguib, Y. Gogotsi, M. W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2 (2012) 133-137. https://doi.org/10.1557/mrc.2012.25
[6] M. W. Barsoum, Physical properties of the MAX phases, in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssi’ere (Eds.), Encyclopedia of Materials: Science and Technology, Oxford, Elsevier, 2006.
[7] X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P.N. Prasad, Two dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848 (2020) 1-58. https://doi.org/10.1016/j.physrep.2019.12.006
[8] T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, X. Wang, Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) mono sheets by first-principles calculations: A comparative study, Phys. Chem. Chem. Phys. 17 (2015) 9997-10003. https://doi.org/10.1039/C4CP05666C
[9] A. N. Enyashin, A. L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx (OH)2 from DFTB calculations, J. Solid State Chem. 207 (2013) 42-48. https://doi.org/10.1016/j.jssc.2013.09.010
[10] H. Lashgari, M. R. Abolhassani, A. Boochani, S. M. Elahi, J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun. 195 (2014) 61-69. https://doi.org/10.1016/j.ssc.2014.06.008
[11] M. Khazaei, A. Ranjbar, M. G. Asl, M. Arai, T. Sasaki, Y. Liang, S. Yunoki, Nearly free electron states in MXenes, Phys. Rev. B. 93 (2016) 1-10. https://doi.org/10.1103/PhysRevB.93.205125
[12] N. K. Chaudhari, H. Jin, B. Kim, D. S. Baek, S.H. Joo, K. Lee, MXene: An emerging two-dimensional material for future energy conversion and storage applications, J. Mater. Chem. A 5 (2017) 24564-24579. https://doi.org/10.1039/C7TA09094C
[13] Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng, N. Liu, L. Li, Z. Zou, X. Jiang, T. Zhai, Y. Gao, MXene-silicon Van Der Waals heterostructures for high-speed self-driven photodetectors, Adv. Electron. Mater. 3 (2017) 1700165. https://doi.org/10.1002/aelm.201700165
[14] S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim, M.-H. Park, H. Zhou, S. Yoo, Y. Gogotsi, T.-W. Lee, A 2D titanium carbide MXene flexible electrode for high efficiency light-emitting diodes, Adv. Mater. 32 (2020) 2000919. https://doi.org/10.1002/adma.202000919
[15] Y. Uğur, Ö. Ayberk, K.P. Nihan, A. Feridun, S. Cem, Vibrational and mechanical properties of single layer MXene structures: A first principles investigation, Nanotechnol. 27 (2016) 335702. https://doi.org/10.1088/0957-4484/27/33/335702
[16] M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Func. Mater. 23 (2013) 17. https://doi.org/10.1002/adfm.201202502
[17] J.W. You, S.R. Bongu, Q. Bao, N.C. Panoiu, Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects, Nanophotonics. 8 (2019) 63-97. https://doi.org/10.1515/nanoph-2018-0106
[18] S. Sharifi, M.F. Nazar, F. Rakhshanizadeh, S.A. Sangsefedi, A. Azarpour, Impact of amino acids, organic solvents and surfactants on azo-hydrazone tautomerism in Methyl Red: pectral-luminescent and nonlinear optical properties, Opt. Quantum Electron. 52 (2020) 98. https://doi.org/10.1007/s11082-020-2211-3
[19] A. A. A. Jafry, G. Krishnan, N. Kasim, N. F. Zulkipli, F. S. M. Samsamnun, R. Apsari, S. W. Harun, MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser, Optical Fiber Technol. 58 (2020) 102289. https://doi.org/10.1016/j.yofte.2020.102289
[20] H. Ghanadan, M. Hoseini, A. Sazgarnia, S. Sharifi, Effect of ion pairs on nonlinear optical properties of crystal violet: Surfactants, nano-droplets, and in vitro culture conditions, J. Electron. Mater. 48 (2019) 7417-7426. https://doi.org/10.1007/s11664-019-07516-9
[21] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon, Metallic MXene saturable absorber for femtosecond mode-locked lasers, Adv. Mater. 29 (2017) 1702496. https://doi.org/10.1002/adma.201702496
[22] X. Zhang, M. Xue, X. Yang, Z. Wang, G. Luo, Z. Huang, X. Sui, C. Li, Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil, RSC Adv. 5 (2015) 2762-2767. https://doi.org/10.1039/C4RA13800G
[23] S. Sharifi, S.G. Salavatovna, A. Azarpour, F. Rakhshanizadeh, G. Zohuri, M.R. Sharifmoghadam, Optical properties of methyl orange-doped droplet and photodynamic therapy of Staphylococcus aureus, J. Fluoresc. 29 (2019) 1331-1341. https://doi.org/10.1007/s10895-019-02459-0
[24] M. Hoseini, A. Sazgarnia, S. Sharifi, Cell culture medium and nano-confined water on nonlinear optical properties of Congo Red, Opt. Quantum Electron. 51 (2019) 144. https://doi.org/10.1007/s11082-019-1865-1
[25] K. Xiong, P. Wang, G. Yang, Z. Liu, H. Zhang, S. Jin, X. Xu, Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities, Sci. Report. 7 (2017) 1-8. https://doi.org/10.1038/s41598-016-0028-x
[26] P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7 (1961) 118. https://doi.org/10.1103/PhysRevLett.7.118
[27] J. Kerr, Phil. Mag. 50 (1985) 337 https://doi.org/10.1080/14786447508641302
[28] M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Optical rectification, Phys. Rev. Lett. 9 (1962) 446 https://doi.org/10.1103/PhysRevLett.9.446
[29] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. https://doi.org/10.1021/ja405735d
[30] M. Hoseini, A. Sazgarnia, S. Sharifi, Cell culture medium and nano-confined water on nonlinear optical properties of Congo Red, Opt. Quantum Electron. 51 (2019) 144. https://doi.org/10.1007/s11082-019-1865-1
[31] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26 (2014) 992-1005. https://doi.org/10.1002/adma.201304138
[32] M. Magnuson, M. Mattesini, Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory, Thin Solid Films. 621 (2017) 108-130. https://doi.org/10.1016/j.tsf.2016.11.005
[33] C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.-H. Park, A. Ascaso, A. Shmeliov, D. Krishnan, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes), Chem. Mater. 29 (2017) 4848. https://doi.org/10.1021/acs.chemmater.7b00745
[34] X.T. Jiang, S.X. Liu, W.Y. Liang, S.J. Luo, Z.L. He, Y.S.Q. Ge, H.D. Wang, R. Cao, F. Zhang, Q. Wen, J.Q. Li, Q.L. Bao, D.Y. Fan, H. Zhang, Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH), Laser Photonics Rev. 12 (2018) 10. https://doi.org/10.1002/lpor.201700229
[35] J. L. Hart, K. Hantanasirisakul, A. C. Lang, B. Anasori, D. Pinto, Y. Pivak, J. T. van Omme, S. J. May, Y. Gogotsi, and M. L. Taheri, Control of MXenes’ electronic properties through termination and intercalation, Nat. Commun. 10 (2019) 522. https://doi.org/10.1038/s41467-018-08169-8
[36] H. Kim, B. Anasori, Y. Gogotsi, H. N. Alshareef, Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes, Chem. Mater. 29, 6472 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
[37] A. L. Ivanovskii, A.N. Enyashin, Graphene-like transition-metal nanocarbides and nanonitrides, Russ. Chem. Rev. 82 (2013) 735. https://doi.org/10.1070/RC2013v082n08ABEH004398
[38] J. Xu, J. Shim, J.-H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors, Adv. Funct. Mater. 26 (2016) 5328-5334. https://doi.org/10.1002/adfm.201600771
[39] X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai, J.S. Francisco, S. Du, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep. 6 (2016) 27971. https://doi.org/10.1038/srep27971
[40] B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P.R.C. Kent, S.J. May, S.J.L. Billinge, M.W. Barsoum, Y. Gogotsi, Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers, Nanoscale Horiz. 1 (2016) 227-234. https://doi.org/10.1039/C5NH00125K
[41] X. H. Li, X. H. Cui, C. H. Xing, H. L. Cui, R. Z. Zhang, Strain-tunable electronic and optical properties of Zr2CO2 MXene and MoSe2 van der Waals heterojunction: A first principles calculation, Appl. Surf. Sci. 548 (2021) 149249 https://doi.org/10.1016/j.apsusc.2021.149249
[42] C. F. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors, Energy Storage Mater. 16 (2019) 102-125. https://doi.org/10.1016/j.ensm.2018.05.003
[43] K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mater. 2 (2016) 1600050. https://doi.org/10.1002/aelm.201600050
[44] Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A.M. Rao, Y. Gogotsi, V.N. Mochalin, R. Podila, Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes, Adv. Mater. 30 (2018) 1705714. https://doi.org/10.1002/adma.201705714
[45] J.K. El-Demellawi, S. Lopatin, J. Yin, O.F. Mohammed, H.N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2TX MXene flakes, ACS Nano. 12 (2018) 8485-8493. https://doi.org/10.1021/acsnano.8b04029
[46] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[47] G.R. Berdiyorov, Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: First-principles calculations, AIP Adv. 6 (2016) 055105. https://doi.org/10.1063/1.4948799
[48] J.H. Liu, X. Kan, B. Amin, L.Y. Gan, Y. Zhao, Theoretical exploration of the potential applications of Sc-based MXenes, Chem. Chem. Phys. 19 (2017) 32253-32261. https://doi.org/10.1039/C7CP06224A
[49] M. Khazaei, A. Ranjbar, A. Masao, S. Yunoki, Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf), Phys. Rev. B. 94 (2016) 125152. https://doi.org/10.1103/PhysRevB.94.125152
[50] C. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors, Energy Storage Mater. 16 (2019) 102-125. https://doi.org/10.1016/j.ensm.2018.05.003
[51] L. Hong, R.F. Klie, S. Öğüt, First-principles study of size- and edge-dependent properties of MXene nanoribbons, Phys. Rev. B. 93 (2016), 115412. https://doi.org/10.1103/PhysRevB.93.115412
[52] D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin, M.N. Hedhili, A.E. Mansour, E.D. Fabrizio, O.F. Mohammed, H.N. Alshareef, MXenes for plasmonic photodetection, Adv. Mater. 31 (2019), 1807658. https://doi.org/10.1002/adma.201807658
[53] S. Juodkazis, V. Mizeikis, H. Misawa, Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J. Appl. Phys. 106 (2009) 14. https://doi.org/10.1063/1.3216462
[54] S. Graf, G. Staupendahl, A. Kramer, F.A. Muller, High precision materials processing using a novel Q-switched CO2 laser, Opt. Lasers Eng. 66 (2015) 152-157. https://doi.org/10.1016/j.optlaseng.2014.09.007
[55] S. Shah, T.S. Alster, Laser treatment of dark skin: An updated review, Am. J. Clin. Dermatol. 11 (2010) 389-397. https://doi.org/10.2165/11538940-000000000-00000
[56] S.A. Hussain, Discovery of several new families of saturable absorbers for ultrashort pulsed laser systems, Sci. Rep. 9 (2019) 19910. https://doi.org/10.1038/s41598-019-56460-5
[57] W. Jin, L. Hu, Review on quasi one-dimensional CdSe nanomaterials: Synthesis and application in photodetectors, Nanomaterials. 9 (2019) 1359. https://doi.org/10.3390/nano9101359
[58] K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum, B. Nabet, Beyond gold: Spin-coated Ti3C2-based MXene photodetectors, Adv. Mater. 31 (2019) 1903271. https://doi.org/10.1002/adma.201903271
[59] Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng, N. Liu, L. Li, Z. Zou, X. Jiang, T. Zhai, Y. Gao, MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors, Adv. Electron. Mater. 3 (2017) 1700165. https://doi.org/10.1002/aelm.201700165
[60] S. Bai, X. Guo, T. Chen, Y. Zhang, X. Zhang, H. Yang, X. Zhao, Solution processed fabrication of silver nanowire-MXene@PEDOT: PSS
flexible transparent electrodes for flexible organic light-emitting diodes, Composites Part A. 139 (2020) 106088. https://doi.org/10.1016/j.compositesa.2020.106088
[61] T. Kim, S. Kang, J. Heo, S. Cho, J. W. Kim, A. Choe. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices, Adv. Mater. 30 (2018) 180065928. https://doi.org/10.1002/adma.201800659
[62] X. Zeng, Q. Zhang, R. Yu, C. Lu, A new transparent conductor: silver nanowire film
buried at the surface of a transparent polymer, Adv. Mater. 22 (2010) 4484-8. https://doi.org/10.1002/adma.201001811
[63] Y. Duan, X. Wang, Y. Yang, D. Yang, P. Chen, Highly flexible peeled-off silver
nanowire transparent anode using in organic light-emitting devices, Appl. Surf. Sci.
351 (2015) 445-50.
[64] J. Chang, K. Chiang, H. Kang, W. Chi, J. Chang, C. Wu, A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent
conducting electrode with superior mechanical and hole injection properties,
Nanoscale. 7 (2015) 4572-9. https://doi.org/10.1039/C4NR06805J
[65] J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulovic, Pathways for solar photovoltaics, Energy Environ. Sci. 8 (2015) 1200-1219. https://doi.org/10.1039/C4EE04073B
[66] F. Xia, X. Wei Sun, S. Chen, Alternating-current MXene polymer light-emitting diodes, Nanoscale. 11 (2019) 5231-5239. https://doi.org/10.1039/C8NR10461A
[67] S. Guo, S. Kang, S. Feng, W. Lu, MXene-enhanced deep ultraviolet photovoltaic performances of crossed Zn2GeO4 nanowires, J. Phys. Chem. C. 124 (2020) 4764-4771. https://doi.org/10.1021/acs.jpcc.0c01032
[68] S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films, ACS Nano. 12 (2018) 6109-6116. https://doi.org/10.1021/acsnano.8b02379
[69] M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13 (2013) 3664-3670. https://doi.org/10.1021/nl401544y
[70] M.F. Bhopal, D.W. Lee, A. Rehman, S.H. Lee, Past and future of graphene/silicon heterojunction solar cells: A review, J. Mater. Chem. C. 5 (2017) 10701-10714. https://doi.org/10.1039/C7TC03060F
[71] D.H. Lien, J.S. Kang, M. Amani, K. Chen, M. Tosun, H.P. Wang, T. Roy, M.S. Eggleston, M.C. Wu, M. Dubey, S.C. Lee, J.H. He, A. Javey, Engineering light out coupling in 2D materials, Nano Lett. 15 (2015) 1356-1361. https://doi.org/10.1021/nl504632u
[72] A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv. 4 (2018) eaat0491. https://doi.org/10.1126/sciadv.aat0491
[73] F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): Applications as an electrically conducting material, Adv. Mater. 32 (202159). https://doi.org/10.1002/adma.202002159
[74] Y. Chen, Y.Y. Yue, S.R. Wang, N. Zhang, H.B. Sun, Graphene as a transparent and conductive electrode for organic optoelectronic devices, Adv. Electron. Mater. 5 (2019), 1900247. https://doi.org/10.1002/aelm.201900247
[75] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution processed reduced graphene oxide films as transparent conductors, ACS Nano. 2 (2008) 463-470. https://doi.org/10.1021/nn700375n
[76] Y.S. Woo, Transparent conductive electrodes based on graphene-related materials, Micromachines. 10 (2019) 1-27. https://doi.org/10.3390/mi10010013
[77] H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alshareef, J. H. He, MXene contacted silicon solar cells with 11.5% efficiency, Adv. Energy Mater. 9 (2019) 1900180. https://doi.org/10.1002/aenm.201900180
[78] M.M. Masis, S.D. Wolf, R.W. Robinson, J.W. Ager, C. Ballif, Transparent electrodes for efficient optoelectronics, Adv. Electron. Mater. 3 (2017) 1600529. https://doi.org/10.1002/aelm.201600529
[79] C. Zhang, B. Anasori, A.S. Ascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance, Adv. Mater. 29 (2017) 1702678. https://doi.org/10.1002/adma.201702678
[80] Mdi. jade 6 (computer software), materials data, Livermore, CA, USA (2004).
[81] D.A. Permin, E.M. Gavrishchuk, O.N. Klyusik, S.V. Egorov, A.A. Sorokin, Self-propagating high-temperature synthesis of Sc2O3 nanopowders using different precursors, Adv. Powder Technol. 27 (2016) 2457-2461. https://doi.org/10.1016/j.apt.2016.08.025
[82] D. Briggs, X-ray photoelectron spectroscopy (XPS), Handbook of Adhesion: Second Edition, 2005.
[83] J.J. Feng, X.H. Li, T.C. Feng, Y.M. Wang, J. Liu, H. Zhang, An harmonic mode locked Er-doped fiber laser by the evanescent field-based MXene Ti3C2Tx (T = F, O, or OH) saturable absorber, Annalen Der Physik. 532 (2020) 7. https://doi.org/10.1002/andp.201900437
[84] R.Z. Zhang, H.L. Cui, X.H. Li, First-principles study of structural, electronic and optical properties of doped Ti2CF2 MXenes, Physica B. 561 (2019) 90-96. https://doi.org/10.1016/j.physb.2019.02.056