Applications of MXenes in Supercapacitors

$30.00

Applications of MXenes in Supercapacitors

Arishma Buragohain, Debajyoti Mahanta

In search of eco-friendly, low-cost, highly efficient energy materials to fulfil the global energy need, the research community from all over the world has explored a novel two-dimensional material called MXene. The term ‘MXene’ refers to a class of materials with very unique features including large surface area, high conductivity, etc., that could be used as the electrode material to fabricate highly efficient supercapacitors with high power density. Moreover, the composites made of MXene with some metal oxides, conducting polymers, and carbon-based materials exhibit very good electrochemical properties as electrode materials of supercapacitors.

Keywords
MAX Phase, MXene, MXene-Based Composite, MXene Symmetric Supercapacitor, MXene Asymmetric Supercapacitor, MXene Micro Supercapacitor, MXene Transparent Supercapacitor

Published online 12/15/2023, 27 pages

Citation: Arishma Buragohain, Debajyoti Mahanta, Applications of MXenes in Supercapacitors, Materials Research Foundations, Vol. 155, pp 1-27, 2024

DOI: https://doi.org/10.21741/9781644902875-1

Part of the book on Recent Advances and Allied Applications of Mxenes

References
[1] A.G. Olabi, Renewable energy and energy storage systems, Energy 136 (2017) 1-6. https://doi.org/10.1016/j.energy.2017.07.054
[2] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: A review, J. Mater. Chem. A. 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
[3] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628-10643. https://doi.org/10.20964/2016.12.50
[4] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: Review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72-79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102
[5] P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors, Energy Convers. Manag. 51 (2010) 2901-2912. https://doi.org/10.1016/j.enconman.2010.06.031
[6] M. Barsoum, T.E. Raghy, The MAX Phases: Unique new carbide and nitride materials, Am. Sci. 89 (2001) 334. https://doi.org/10.1511/2001.28.334
[7] M. Boota, Y. Gogotsi, MXene-Conducting polymer asymmetric pseudocapacitors, Adv. Energy Mater. 9 (2019) 1-8. https://doi.org/10.1002/aenm.201802917
[8] T. Lapauw, K. Lambrinou, T. Cabioc’h, J. Halim, J. Lu, A. Pesach, O. Rivin, O. Ozeri, E.N. Caspi, L. Hultman, P. Eklund, J. Rosén, M.W. Barsoum, J. Vleugels, Synthesis of the new MAX phase Zr2AlC, J. Eur. Ceram. Soc. 36 (2016) 1847-1853. https://doi.org/10.1016/j.jeurceramsoc.2016.02.044
[9] G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. Gogotsi, Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals, ACS Nano. 14 (2020) 204-217. https://doi.org/10.1021/acsnano.9b07708
[10] J. Chen, Q. Huang, H. Huang, L. Mao, M. Liu, X. Zhang, Y. Wei, Recent progress and advances in the environmental applications of MXene related materials, Nanoscale. 12 (2020) 3574-3592. https://doi.org/10.1039/C9NR08542D
[11] M. Roknuzzaman, M.A. Hadi, M.A. Ali, M.M. Hossain, N. Jahan, M.M. Uddin, J.A. Alarco, K. Ostrikov, First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study, J. Alloys Compd. 727 (2017) 616-626. https://doi.org/10.1016/j.jallcom.2017.08.151
[12] M. Griseri, B. Tunca, T. Lapauw, S. Huang, L. Popescu, M.W. Barsoum, K. Lambrinou, J. Vleugels, Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase, J. Eur. Ceram. Soc. 39 (2019) 2973-2981. https://doi.org/10.1016/j.jeurceramsoc.2019.04.021
[13] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[14] Y. Gogotsi, B. Anasori, The rise of MXenes, ACS Nano. 13 (2019) 8491-8494. https://doi.org/10.1021/acsnano.9b06394
[15] M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes, Adv. Mater. 33 (2021) 1-10. https://doi.org/10.1002/adma.202103393
[16] L. Verger, C. Xu, V. Natu, H.M. Cheng, W. Ren, M.W. Barsoum, Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides, Curr. Opin. Solid State Mater. Sci. 23 (2019) 149-163. https://doi.org/10.1016/j.cossms.2019.02.001
[17] M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang, Z. Li, Emerging 2D MXenes for supercapacitors: Status, challenges and prospects, Chem. Soc. Rev. 49 (2020) 6666-6693. https://doi.org/10.1039/D0CS00175A
[18] J.A. Kumar, P. Prakash, T. Krithiga, D.J. Amarnath, J. Premkumar, N. Rajamohan, Y. Vasseghian, P. Saravanan, M. Rajasimman, Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review, Chemosphere. 286 (2022) 131607. https://doi.org/10.1016/j.chemosphere.2021.131607
[19] L. Chen, J. Zhang, Q. Li, J. Vatamanu, X. Ji, T.P. Pollard, C. Cui, S. Hou, J. Chen, C. Yang, L. Ma, M.S. Ding, M. Garaga, S. Greenbaum, H.S. Lee, O. Borodin, K. Xu, C. Wang, A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries, ACS Energy Lett. 5 (2020) 968-974. https://doi.org/10.1021/acsenergylett.0c00348
[20] P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, MXene-based photocatalysts, J. Mater. Sci. Technol. 56 (2020) 18-44. https://doi.org/10.1016/j.jmst.2020.02.037
[21] Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, X.F. Chu, Y. Wei, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, Two-dimensional vanadium carbide (V2C) MXene as an electrode for supercapacitors with aqueous electrolytes, Electrochem. Commun. 96 (2018) 103-107. https://doi.org/10.1016/j.elecom.2018.10.012
[22] X. Wang, S. Lin, H. Tong, Y. Huang, P. Tong, B. Zhao, J. Dai, C. Liang, H. Wang, X. Zhu, Y. Sun, S. Dou, Two-dimensional V4C3 MXene as high-performance electrode materials for supercapacitors, Electrochim. Acta. 307 (2019) 414-421. https://doi.org/10.1016/j.electacta.2019.03.205
[23] S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors, Adv. Funct. Mater. 30 (2020) 1-8. https://doi.org/10.1002/adfm.202000815
[24] A.S. Etman, J. Halim, J. Rosen, Fabrication of Mo1.33CTz (MXene)-cellulose freestanding electrodes for supercapacitor applications, Mater. Adv. 2 (2021) 743-753. https://doi.org/10.1039/D0MA00922A
[25] Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, C. Cao, Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors, ACS Nano. 14 (2020) 3576-3586. https://doi.org/10.1021/acsnano.9b10066
[26] L. Qin, Q. Tao, A. El Ghazaly, J.f. Rodriguez, P.O.Å. Persson, J. Rosen, F. Zhang, High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS, Adv. Funct. Mater. 28 (2018) 1-8. https://doi.org/10.1002/adfm.201703808
[27] J. Vyskočil, C.C.M. Martinez, K. Szőkölová, A. Dash, J.G. Julian, Z. Sofer, M. Pumera, 2D stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior, ChemElectroChem. 6 (2019) 3982-3986. https://doi.org/10.1002/celc.201900643
[28] X. Lu, J. Zhu, W. Wu, B. Zhang, Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance, Electrochim. Acta. 228 (2017) 282-289. https://doi.org/10.1016/j.electacta.2017.01.025
[29] J. Zhu, X. Lu, L. Wang, Synthesis of a MoO3/Ti3C2T: X composite with enhanced capacitive performance for supercapacitors, RSC Adv. 6 (2016) 98506-98513. https://doi.org/10.1039/C6RA15651G
[30] Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors, J. Power Sources. 327 (2016) 221-228. https://doi.org/10.1016/j.jpowsour.2016.07.062
[31] N. Liu, Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small. 13 (2017) 1-10. https://doi.org/10.1002/smll.201701989
[32] Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors, J. Mater. Chem. A. 7 (2019) 8984-8992. https://doi.org/10.1039/C9TA00085B
[33] R. Ramachandran, K. Rajavel, W. Xuan, D. Lin, F. Wang, Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode, Ceram. Int. 44 (2018) 14425-14431. https://doi.org/10.1016/j.ceramint.2018.05.055
[34] R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, X. Luo, Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors, Electrochim. Acta. 292 (2018) 31-38. https://doi.org/10.1016/j.electacta.2018.09.149
[35] K. Zhao, H. Wang, C. Zhu, S. Lin, Z. Xu, X. Zhang, Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor, Electrochim. Acta. 308 (2019) 1-8. https://doi.org/10.1016/j.electacta.2019.03.225
[36] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2015) 339-345. https://doi.org/10.1002/adma.201404140
[37] M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, C. Zhi, Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene, Adv. Energy Mater. 6 (2016). https://doi.org/10.1002/aenm.201600969
[38] M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2d titanium carbide (MXene), Adv. Mater. 28 (2016) 1517-1522. https://doi.org/10.1002/adma.201504705
[39] Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16676-16681. https://doi.org/10.1073/pnas.1414215111
[40] Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei, Y. Ma, J. Li, M. Wang, W. Li, W. Zeng, MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater. 5 (2019) 1-8. https://doi.org/10.1002/aelm.201900537
[41] A. Vahidmohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C.A. Carrero, M. Beidaghi, Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance, J. Mater. Chem. A. 6 (2018) 22123-22133. https://doi.org/10.1039/C8TA05807E
[42] N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin, G. Shan, Laser-cutting fabrication of Mxene-based flexible micro-supercapacitors with high areal capacitance, ChemNanoMat. 5 (2019) 658-665. https://doi.org/10.1002/cnma.201800674
[43] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance, Nature. 516 (2015) 78-81. https://doi.org/10.1038/nature13970
[44] M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene, ACS Nano. 12 (2018) 3578-3586. https://doi.org/10.1021/acsnano.8b00676
[45] C.A. Voigt, M. Ghidiu, V. Natu, M.W. Barsoum, Anion Adsorption, Ti3C2Tz MXene multilayers, and their effect on claylike swelling, J. Phys. Chem. C. 122 (2018) 23172-23179. https://doi.org/10.1021/acs.jpcc.8b07447
[46] S. Kajiyama, L. Szabova, H. Iinuma, A. Sugahara, K. Gotoh, K. Sodeyama, Y. Tateyama, M. Okubo, A. Yamada, Enhanced Li-Ion accessibility in MXene titanium carbide by steric chloride termination, Adv. Energy Mater. 7 (2017) 1-8. https://doi.org/10.1002/aenm.201601873
[47] J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang, M. Anayee, F. Pan, B. Xu, Y. Gogotsi, Optimizing ion pathway in titanium carbide mxene for practical high-rate supercapacitor, Adv. Energy Mater. 11 (2021) 1-8. https://doi.org/10.1002/aenm.202003025
[48] M. Hu, Z. Li, G. Li, T. Hu, C. Zhang, X. Wang, All-solid-state flexible fiber-based MXene supercapacitors, Adv. Mater. Technol. 2 (2017) 1-6. https://doi.org/10.1002/admt.201700143
[49] W. Shao, M. Tebyetekerwa, I. Marriam, W. Li, Y. Wu, S. Peng, S. Ramakrishna, S. Yang, M. Zhu, Polyester@MXene nanofibers-based yarn electrodes, J. Power Sources. 396 (2018) 683-690. https://doi.org/10.1016/j.jpowsour.2018.06.084
[50] K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, Titanium carbide sheet based high performance wire type solid state supercapacitors, J. Mater. Chem. A. 5 (2017) 5726-5736. https://doi.org/10.1039/C6TA11198J
[51] E.A. Mayerberger, O. Urbanek, R.M. McDaniel, R.M. Street, M.W. Barsoum, C.L. Schauer, Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning, J. Appl. Polym. Sci. 134 (2017) 1-7. https://doi.org/10.1002/app.45295
[52] A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, MXene-based fibers, yarns, and fabrics for wearable energy storage devices, Adv. Funct. Mater. 30 (2020) 1-22. https://doi.org/10.1002/adfm.202000739
[53] H. Huang, H. Su, H. Zhang, L. Xu, X. Chu, C. Hu, H. Liu, N. Chen, F. Liu, W. Deng, B. Gu, H. Zhang, W. Yang, Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive freestanding Ti3C2Tx films, Adv. Electron. Mater. 4 (2018) 1-9. https://doi.org/10.1002/aelm.201800179
[54] J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance, Small. 14 (2018) 1-9. https://doi.org/10.1002/smll.201803786
[55] N. Kurra, B. Ah qmed, Y. Gogotsi, H.N. Alshareef, MXene-on-Paper Coplanar Microsupercapacitors, Adv. Energy Mater. 6 (2016) 1-8. https://doi.org/10.1002/aenm.201601372
[56] P. Forouzandeh, S.C. Pillai, MXenes-based nanocomposites for supercapacitor applications, Curr. Opin. Chem. Eng. 33 (2021) 100710. https://doi.org/10.1016/j.coche.2021.100710
[57] Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui, Y. Hu, All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage, Appl. Surf. Sci. 528 (2020) 146975. https://doi.org/10.1016/j.apsusc.2020.146975
[58] T.A. Le, N.Q. Tran, Y. Hong, H. Lee, Intertwined titanium carbide MXene within a 3 D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances, Chem. – A Eur. J. 25 (2019) 1037-1043. https://doi.org/10.1002/chem.201804291
[59] L. Sun, G. Song, Y. Sun, Q. Fu, C. Pan, MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors, ACS Appl. Mater. Interfaces. 12 (2020) 44777-44788. https://doi.org/10.1021/acsami.0c13059
[60] Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu, C. Luo, H. Zhang, F. Cheng, J. Rao, X. Hu, J. Su, Y. Gao, Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel, ACS Nano. 12 (2018) 4224-4232. https://doi.org/10.1021/acsnano.7b07528
[61] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices, Adv. Mater. 29 (2017). https://doi.org/10.1002/adma.201605336
[62] K. Ghosh, M. Pumera, MXene and MoS3−x Coated 3D-Printed Hybrid Electrode for Solid-State Asymmetric Supercapacitor, Small Methods. 5 (2021) 1-15. https://doi.org/10.1002/smtd.202100451
[63] M. Boota, M. Rajesh, M. Bécuwe, Multi-electron redox asymmetric supercapacitors based on quinone-coupled viologen derivatives and Ti3C2Tx MXene, Mater. Today Energy. 18 (2020) 100532. https://doi.org/10.1016/j.mtener.2020.100532
[64] C. Couly, M. Alhabeb, K.L. Van Aken, N. Kurra, L. Gomes, A.M.N. Suárez, B. Anasori, H.N. Alshareef, Y. Gogotsi, Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor, Adv. Electron. Mater. 4 (2018) 1-8. https://doi.org/10.1002/aelm.201700339
[65] Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors, Adv. Energy Mater. 8 (2018) 1-10. https://doi.org/10.1002/aenm.201703043
[66] A. El Ghazaly, W. Zheng, J. Halim, E.N. Tseng, P.O. Persson, B. Ahmed, J. Rosen, Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte, Energy Storage Mater. 41 (2021) 203-208. https://doi.org/10.1016/j.ensm.2021.05.006
[67] J. Fu, L. Li, J.M. Yun, D. Lee, B.K. Ryu, K.H. Kim, Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor, Chem. Eng. J. 375 (2019) 121939. https://doi.org/10.1016/j.cej.2019.121939
[68] J. Fu, J. Yun, S. Wu, L. Li, L. Yu, K.H. Kim, Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor, ACS Appl. Mater. Interfaces. 10 (2018) 34212-34221. https://doi.org/10.1021/acsami.8b10195
[69] Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage, Energy Environ. Sci. 9 (2016) 2847-2854. https://doi.org/10.1039/C6EE01717G
[70] Q. Li, Q. Wang, L. Li, L. Yang, Y. Wang, X. Wang, H.T. Fang, Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections, Adv. Energy Mater. 10 (2020) 1-8. https://doi.org/10.1002/aenm.202000470
[71] H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2 -decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance, Adv. Energy Mater. 9 (2019) 1-13. https://doi.org/10.1002/aenm.201803987
[72] J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater. 26 (2014) 2374-2381. https://doi.org/10.1021/cm500641a
[73] Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors, Nano Energy 38 (2017) 368-376. https://doi.org/10.1016/j.nanoen.2017.06.009
[74] C.J. Zhang, B. Anasori, A.S. -Ascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance, Adv. Mater. 29 (2017) 1-9. https://doi.org/10.1002/adma.201702678
[75] K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mater. 2 (2016) 1-7. https://doi.org/10.1002/aelm.201600050
[76] D. Wen, X. Wang, L. Liu, C. Hu, C. Sun, Y. Wu, Y. Zhao, J. Zhang, X. Liu, G. Ying, Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: A strategy for flexible energy storage devices, ACS Appl. Mater. Interfaces 13 (2021) 17766-17780. https://doi.org/10.1021/acsami.1c00724