Topological Insulators for Mode-Locked Fiber Lasers
Sabahat Urossha, S.S. Ali
In this chapter, topological insulator materials such as graphene and bismuth telluride (Bi2Te3) as saturable absorbers (SA) are discussed experimentally in erbium and ytterbium-doped mode-lock fiber lasers. Ultra-short pulses at various wavelengths can be produced by modifying the crystal structures of topological insulators (TIs). This chapter provides a detailed explanation of how TIs can be created and incorporated as effective passive saturable absorbers with different fiber mode-lock lasers capable of providing basic to high-harmonic pulse production. The function of mode-locking in Er and Yb-doped fiber lasers is described experimentally by making use of various fabrication methods and optical characterizations are also discussed. The findings show that fiber-laser saturable absorbers comprised of Bi2Te3 and graphene have the potential to be utilized in powerful mode-locked fiber laser technologies.
Keywords
Topological Insulators, Mode-Locking, Saturable Absorber, Multi-Pulses, Optical Characterization
Published online 12/15/2023, 25 pages
Citation: Sabahat Urossha, S.S. Ali, Topological Insulators for Mode-Locked Fiber Lasers, Materials Research Foundations, Vol. 154, pp 147-171, 2024
DOI: https://doi.org/10.21741/9781644902851-8
Part of the book on Topological Insulators
References
[1] W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, Z. Wei, 70-fs mode-locked erbium-doped fiber laser with topological insulator. Scientific reports 6 (2016) 19997. https://doi.org/10.1038/srep19997
[2] P. Grelu, J. M. S. Crespo, Multisoliton states and pulse fragmentation in a passively mode-locked fiber laser. Journal of Optics B: Quantum and Semiclassical Optics 6 (2004) S271. https://doi.org/10.1088/1464-4266/6/5/015
[3] P. Grelu, J. M. Crespo, Temporal soliton “molecules” in mode-locked lasers: Collisions, pulsations, and vibrations. Springer Berlin Heidelberg, 2008, p. 1-37. https://doi.org/10.1007/978-3-540-78217-9_6
[4] J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, K. M. Abramski, Mode-locked Er-doped fiber laser based on liquid-phase exfoliated Sb2Te3 topological insulator. Laser Physics 24 (2014) 105111. https://doi.org/10.1088/1054-660X/24/10/105111
[5] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, D. J. Richardson, Passively Q-switched 0.1-mJ fiber laser system at 1.53? Optics letters 24 (1999) 388-390. https://doi.org/10.1364/OL.24.000388
[6] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, D. Tang, Ultra-short pulse generation by a topological insulator-based saturable absorber. Applied Physics Letters 101 (2012) 211106. https://doi.org/10.1063/1.4767919
[7] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, W. C. Xu, 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Optics letters 38 (2013) 5212-5215. https://doi.org/10.1364/OL.38.005212
[8] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee, A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Optics express 22 (2014) 6165-6173. https://doi.org/10.1364/OE.22.006165
[9] H. A. Haus, Theory of mode locking with a fast saturable absorber. Journal of Applied Physics 46 (1975) 3049-3058. https://doi.org/10.1063/1.321997
[10] Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’neill, A. C. Ferrari, A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Applied Physics Letters 95 (2009) 253102. https://doi.org/10.1063/1.3275866
[11] Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, C. Ye, Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper. IEEE Photonics Technology Letters 24 (2012) 1539-1542. https://doi.org/10.1109/LPT.2012.2208100
[12] C. Chi, J. Lee, J. Koo, J. H. Lee, All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber. Laser Physics 24 (2014) 105106. https://doi.org/10.1088/1054-66/24/10/105106
[13] Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, J. Weng, Topological-insulator passively Q-switched double-clad Fiber laser at 2$\mu $ m wavelength. IEEE Journal of Selected Topics in Quantum Electronics 20 (2014) 1-8. https://doi.org/10.1109/JSTQE.2014.2305834
[14] H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, J. Wang, Topological insulator as an optical modulator for pulsed solid‐state lasers. Laser & Photonics Reviews 7 (2013) L77-L83. https://doi.org/10.1002/lpor.201300084
[15] J. Chen, J. W. Sickler, E. P. Ippen, F. X. Kärtner, High repetition rate, low jitter, low-intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Optics letters 32 (2007) 1566-1568. https://doi.org/10.1364/OL.32.001566
[16] J. Sotor, G. Sobon, W. Macherzynski, K. M. Abramski, K. M. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Physics Letters 11 (2014) 055102. https://doi.org/10.1088/1612-2011/11/5/055102
[17] P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, G. Cao, Microfiber-based WS 2-film saturable absorber for ultra-fast photonics. Optical Materials Express 5 (2015) 479-489. https://doi.org/10.1364/OME.5.000479
[18] M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, J. H. Lee, An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction. Laser Physics Letters 9 (2012) 669. https://doi.org/10.7452/lapl.201210061
[19] Y. Meng, G. Semaan, M. Salhi, A. Niang, K. Guesmi, Z. C. Luo, F. Sanchez, High power L-band mode-locked fiber laser based on topological insulator saturable absorber. Optics express 23 (2015) 23053-23058. https://doi.org/10.1364/OE.23.023053
[20] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase. Nature 452 (2008) 970-974. https://doi.org/10.1038/nature06843
[21] A. Martinez, Z. Sun, Nanotube and graphene saturable absorbers for fiber lasers. Nature Photonics 7 (2013) 842-845. https://doi.org/10.1038/nphoton.2013.304
[22] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, J. Hu, A practical topological insulator saturable absorber for a mode-locked fiber laser. Scientific reports 5 (2015) 1-5. https://doi.org/10.1038/srep08690
[23] S. Mondal, R. Ganguly, K. Mondal, Topological Insulators: An In‐depth review of their use in modelocked fiber lasers. Annalen der Physik 533 (2021) 2000564. https://doi.org/10.1002/andp.202000564
[24] K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, J. Chen, High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides, and black phosphorus: review and perspective. Optics Communications 406 (2018) 214-229. https://doi.org/10.1016/j.optcom.2017.02.024
[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. E. Jiang, Y. Zhang, S. V. Dubonos, A. A. Firsov, Electric field effect in atomically thin carbon films. Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[26] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee, A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Optics express 22 (2014) 6165-6173. https://doi.org/10.1364/OE.22.006165
[27] J. Sotor, G. Sobon, K. M. Abramski, Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Optics express 22 (2014) 13244-13249. https://doi.org/10.1364/OE.22.013244
[28] H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, Y. Liu, Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Optics expres 22 (2014) 17341-17348. https://doi.org/10.1364/OE.22.017341
[29] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, J. Hu, A practical topological insulator saturable absorber for a mode-locked fiber laser. Scientific reports 5 (2015) 1-5. https://doi.org/10.1038/srep08690
[30] J. Boguslawski, G. Sobon, R. Zybala, J. Sotor, Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. Optics letters 40 (2015) 2786-2789. https://doi.org/10.1364/OL.40.002786
[31] M. Kowalczyk, J. Boguslawski, D. Stachowiak, J. Tarka, R. Zybala, K. Mars, K. M. Abramski, All-normal dispersion Yb-doped fiber laser mode-locked by Sb2Te3 topological insulator. SPIE. 9893 (2016) 127-133. https://doi.org/10.1117/12.2225893
[32] B. Guo, Y. Yao, P. G. Yan, K. Xu, J. J. Liu, S. G. Wang, Y. Li, Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper. IEEE Photonics Technology Letters 28 (2015) 323-326. https://doi.org/10.1109/LPT.2015.2495330
[33] H. Chen, I. L. Li, S. Ruan, T. Guo, P. Yan, Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers. Optical Engineering 55 (2016) 081318-081318. https://doi.org/10.1117/1.OE.55.8.081318
[34] Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, Z. H. Yu, Yb: YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber. Laser Physics 25 (2015) 025901. https://doi.org/10.1088/1054-660X/25/2/025901
[35] A. C. Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. van der Zant, G. A. Steele, Laser-thinning of MoS2: On-demand generation of a single-layer semiconductor. Nano letters 12 (2012) 3187-3192. https://doi.org/10.1021/nl301164v
[36] J. Sotor, G. Sobon, K. Grodecki, K. M. Abramski, Mode-locked Erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator. Applied Physics Letters 104 (2014) 251112. https://doi.org/10.1063/1.4885371
[37] R. W. Newson, J. Dean, B. Schmidt, H. M. van Driel, Ultrafast carrier kinetics in exfoliated graphene and thin graphite films. Optics express 17 (2009) 2326-2333. https://doi.org/10.1364/OE.17.002326
[38] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters 92 (2008) 042116. https://doi.org/10.1063/1.2837539
[39] J. Sarkar, D. K. Das, Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks. International Journal of Minerals, Metallurgy, and Materials 26 (2019) 1322-1328. https://doi.org/10.1007/s12613-019-1835-4
[40] G. C. Sosso, S. Caravati, M. Bernasconi, Vibrational properties of crystalline Sb2Te3 from first principles. Journal of Physics: Condensed Matter 21 (2009) 095410. https://doi.org/10.1088/0953-8984/21/9/095410
[41] G. C. Sosso, S. Caravati, M. Bernasconi, Vibrational properties of crystalline Sb2Te3 from first principles. Journal of Physics: Condensed Matter 21 (2009) 095410. https://doi.org/10.1088/0953-8984/21/9/095410
[42] K. M. F. Shahil, M. Z. Hossain, V. Goyal, A. A. Balandin, Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. Journal of Applied Physics 111 (2012) 054305. https://doi.org/10.1063/1.3690913
[43] L. Li, P. G. Yan, Y. G. Wang, L. N. Duan, H. Sun, J. H. Si, Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited. Chinese Physics B 24 (2015) 124204. https://doi.org/10.1088/1674-1056/24/12/124204
[44] L. Li, Y. Wang, X. Wang, T. Lin, H. Sun, High energy mode-locked Yb-doped fiber laser with Bi2Te3 deposited on tapered fiber. Optik 142 (2007) 470-474. https://doi.org/10.1016/j.ijleo.2017.06.029
[45] P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, S. Ruan, Topological insulator solution filled in photonic crystal fiber for a passive mode-locked fiber laser. IEEE Photonics Technology Letters 27 (2014) 264-267. https://doi.org/10.1109/LPT.2014.2361915
[46] J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber. Optics communications 285 (2012) 3174-3178. https://doi.org/10.1016/j.optcom.2012.03.002
[47] C. Lecaplain, J. M. Crespo, P. Grelu, C. Conti, Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers. Optics Letters 39 (2014) 263-266. https://doi.org/10.1364/OL.39.000263
[48] B. A. Malomed, Bound solitons in the nonlinear Schrödinger/Ginzburg-Landau equation. Springer Berlin Heidelberg 392 (2005) 288-294. https://doi.org/10.1007/3-540-54899-8_48
[49] Y. Peiguang, L. Rongyong, Z. Han, W. Zhiteng, C. Han, R. Shuangchen, Multi-pulses dynamic patterns in a topological insulator mode-locked ytterbium-doped fiber laser. Optics Communications 335 (2015) 65-72. https://doi.org/10.1016/j.optcom.2014.09.009
[50] K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, J. Chen, High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: Review and perspective. Optics Communications 406 (2018) 214-229. https://doi.org/10.1016/j.optcom.2017.02.024
[51] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Scientific reports 6 (2016) 30361. https://doi.org/10.1038/srep30361
[52] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, Z. X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325 (2009) 178-181. https://doi.org/10.1126/science.1173034
[53] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, J. R. Taylor, Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Optics express 22 (2014) 31113-31122. https://doi.org/10.1364/OE.22.031113
[54] Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, J. Bai, 946 nm Nd: YAG double Q-switched laser based on monolayer WSe2 saturable absorbers. Optics Express 25 (2017) 21037-21048. https://doi.org/10.1364/OE.25.021037
[55] J. Sotor, G. Sobon, K. M. Abramski, Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Optics express 22 (2014) 13244-13249. https://doi.org/10.1364/OE.22.013244
[56] G. Semaan, Y. Meng, M. Salhi, A. Niang, K. Guesmi, Z. C. Luo, F. Sanchez, High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber. SPIE 9893 (2016) 120-126. https://doi.org/10.1117/12.2224945
[57] JM. ung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, J. H. Lee, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Optics express 22 (2014) 7865-7874. https://doi.org/10.1364/OE.22.007865
[58] Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, Y. Tang, Mode-locked thulium fiber laser with MoS2. Laser Physics Letters 12 (2015) 065104. https://doi.org/10.1088/1612-2011/12/6/065104
[59] M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee, Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction. Optics express 23 (1205) 19996-20006. https://doi.org/10.1364/OE.23.019996
[60] D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, J. Zhao, Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Scientific reports 6 (2016) 23583. https://doi.org/10.1038/srep23583
[61] H. Ahmad, S. N. Aidit, N. A. Hassan, M. F. Ismail, Z. C. Tiu, Generation of mode-locked erbium-doped fiber laser using MoSe2 as saturable absorber. Optical Engineering 55 (2016) 076115-076115. https://doi.org/10.1117/1.OE.55.7.076115
[62] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, Q-switching stability limits of continuous-wave passive mode locking. JOSA B, 16(1999), 46-56. https://doi.org/10.1364/JOSAB.16.000046
[63] C. Chi, J. Lee, J. Koo, J. H. Lee, All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber. Laser Physics 24 (2014) 105106. https://doi.org/10.1088/1054-66/24/10/105106
[64] W. Tian, W. Yu, J. Shi, Y. Wang, The property, preparation and application of topological insulators: A review. Materials 10 (2017) 814. https://doi.org/10.3390/ma10070814