Topological Insulators in Optical Applications
Sabahat Urossha, S.S. Ali
Since the discovery of topological insulators, researchers in condensed matter physics have focused on studying multiple topological states of matter. Topological insulators can transport an electron across the boundary without backscattering when they experience surface contaminants because of the unique exotic phase they exhibit. Research in topological photonics is among the most active fields of study in optics, and it is also one of the driving forces of research in topological physics. With the recent discovery of topological states of matter, EM waves can now be controlled and manipulated in a novel way. These metamaterials have the ability to revolutionize a wide range of electromagnetic design domains, from very durable cavities to tiny waveguides.
Keywords
Topological Insulators, Nonlinear Optical Behavior, Saturable Absorber
Published online 12/15/2023, 27 pages
Citation: Sabahat Urossha, S.S. Ali, Topological Insulators in Optical Applications, Materials Research Foundations, Vol. 154, pp 120-146, 2024
DOI: https://doi.org/10.21741/9781644902851-7
Part of the book on Topological Insulators
References
[1] L. Lu, D. John, Topological photonics, Nature Photonics 8 (2014) 821-829. https://doi.org/10.1038/nphoton.2014.248
[2] T. Ozawa, H. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. Rechtsman, C. Mikael, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Topological photonics, Reviews of Modern Physics 91 (2019) 015006. https://doi.org/10.1103/RevModPhys.91.015006
[3] M.A. Shameli, L. Yousef, Absorption enhanced thin-flm solar cells using fractal nano-structures, IET Optoelectron. (2021). https://doi.org/10.1049/ote2.12036
[4] L.H. Wu, X. Hu, Scheme for achieving a topological photonic crystal by using a dielectric material, Phys. Rev. Lett. 114 (2015), 223901. https://doi.org/10.1103/PhysRevLett.114.223901
[5] M.H. Latifpour, L. Yousef, Topological plasmonic edge states in a planar array of metallic nanoparticles, Nanophotonics 8 (2019) 799-806. https://doi.org/10.1515/nanoph-2018-0230
[6] L. Lu, J.D. Joannopoulos, M. Soljaˇci’c, Topological photonics, Nat. Photonics 8 (2014) 821-829. https://doi.org/10.1038/nphoton.2014.248
[7] P. Zhou, G.G. Liu, X. Ren, Y. Yang, H. Xue, L. Bi, L. Deng, Y. Chong, B. Zhang, Photonic amorphous topological insulator, Light Sci. Appl. 9 (2020) 1-8. https://doi.org/10.1038/s41377-020-00368-7
[8] C.H. Park. C. Hwang, Photoelectron spin-flipping and texture manipulation in a topological insulator, Nature Physics 9 (2013) 293-298. https://doi.org/10.1038/nphys2572
[9] W. Ye, R. Long, H. Huang, Y. Xiong, Plasmonic nanostructures in solar energy conversion, J. Mater. Chem. 5 (2017) 1008-1021. https://doi.org/10.1039/C6TC04847A
[10] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater 9 (2010) 205-213. https://doi.org/10.1038/nmat2629
[11] J. Jang, M. Kim, Y. Kim, K. Kim, S.J. Baik, H. Lee, J.C. Lee, Three-dimensional a-Si: H thin-film solar cells with silver nano-rod back electrodes, Curr. Appl Phys. 14 (2014) 637-640. https://doi.org/10.1016/j.cap.2014.02.006
[12] P. Yu, Y. Yao, J. Wu, X. Niu, A.L. Rogach, Z. Wang, Effects of plasmonic metal core dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells, Sci. Rep. 7 (2017) 1-10. https://doi.org/10.1038/s41598-016-0028-x
[13] Y.M. Song, J.S. Yu, Y.T. Lee, Antireflective submicrometric gratings on thin-film silicon solar cells for light-absorption enhancement, Opt. Lett. 35 (2010) 276-278. https://doi.org/10.1364/OL.35.000276
[14] F. Taghian, V. Ahmadi, L. Yousef, Enhanced thin solar cells using optical nanoantenna induced hybrid plasmonic traveling-wave, J. Lightwave Technol. 34 (2016) 1267-1273. https://doi.org/10.1109/JLT.2015.2511542
[15] M.A. Shameli, L. Yousef, Absorption enhancement in thin-film solar cells using an integrated meta surface lens, JOSA B 35 (2018) 223-230. https://doi.org/10.1364/JOSAB.35.000223
[16] M.R. Khan, X. Wang, P. Bermel, M.A. Alam, Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law, Opt. Express 22 (2014) A973-A985. https://doi.org/10.1364/OE.22.00A973
[17] M.A. Shameli, P. Salami, L. Yousef, Light trapping in thin film solar cells using a polarization independent phase gradient metasurface, J. Opt. 20 (2018) 125004. https://doi.org/10.1088/2040-8986/aaea54
[18] W.R. Erwin, H.F. Zarick, E.M. Talbert, R. Bardhan, Light trapping in mesoporous solar cells with plasmonic nanostructures, Energy Environ. Sci. 9 (2016) 1577-1601. https://doi.org/10.1039/C5EE03847B
[19] L.H. Zhu, M.R. Shao, R.W. Peng, R.H. Fan, X.R. Huang, M. Wang, Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal, Opt. Express 21 (2013) A313-A323. https://doi.org/10.1364/OE.21.00A313
[20] P. Kowalczewski, M. Liscidini, L.C. Andreani, L. Claudio Andreani, Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells, Opt. Lett. 37 (2012) 4868. https://doi.org/10.1364/OL.37.004868
[21] D.H. Lee, J.Y. Kwon, S. Maldonado, A. Tuteja, A. Boukai, Extreme light absorption by multiple plasmonic layers on upgraded metallurgical-grade silicon solar cells, Nano Lett. 14 (2014) 1961-1967. https://doi.org/10.1021/nl4048064
[22] S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, F. Yan, Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement, Energy Environ. Sci. 9 (2016) 898-905. https://doi.org/10.1039/C5EE03779D
[23] M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in modified grating thin-film solar cell, IEEE Photonics J. 9 (2017) 1-14. https://doi.org/10.1109/JPHOT.2017.2698720
[24] M.H. Mohammadi, D. Fathi, M. Eskandari, Nio@GeSe core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: A numerical study, Sol. Energy 204 (2020) 200-207. https://doi.org/10.1016/j.solener.2020.04.038
[25] M.A. Shameli, L. Yousef, Light trapping in thin-film crystalline silicon solar cells using multi-scale photonic topological insulators, Optics & Laser Technology 145 (2022) 107457 https://doi.org/10.1016/j.optlastec.2021.107457
[26] K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett. 45 (1980) 494-497 https://doi.org/10.1103/PhysRevLett.45.494
[27] Y. Zhang, Y. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005) 201-204 https://doi.org/10.1038/nature04235
[28] K.S. Novoselov, Z. Jiang, Y. Zhang, Room-temperature quantum hall effect in graphene, Science 315(2007) 1379. https://doi.org/10.1126/science.1137201
[29] X. Cheng, C. Jouvaud, X. Ni, S.H. Mousavi, A.Z. Genack, A.B. Khanikaev, Robust reconfigurable electromagnetic pathways within a photonic topological insulator, Nat. Mater. 15 (2016) 542-548 https://doi.org/10.1038/nmat4573
[30] M. Goryachev, M.E. Tobar, Reconfigurable microwave photonic topological insulator, Phys. Rev. Appl. 6 (2016) 064006. https://doi.org/10.1103/PhysRevApplied.6.064006
[31] A. Furusaki, Weyl points and Dirac lines protected by multiple screw rotations, Sci. Bull. 62 (2017) 788-794 https://doi.org/10.1016/j.scib.2017.05.014
[32] A. Khaleque, H.T. Hattori, Absorption enhancement in graphene photonic crystal structures, Appl. Opt. 55 (2016) 2936-2942 https://doi.org/10.1364/AO.55.002936
[33] S.A. Skirlo, L. Lu, M. Soljacic, M., Multimode one-way waveguides of large Chern numbers, Phys. Rev. Lett. 113 (2014) 113904. https://doi.org/10.1103/PhysRevLett.113.113904
[34] S.A. Skirlo, L. Lu, Q. Yan, Experimental observation of large chern numbers in photonic crystals, Phys. Rev. Lett. 115 (2015) 253901. https://doi.org/10.1103/PhysRevLett.115.253901
[35] C.L. Kane, E.J. Mele, Z2 Topological order and the quantum spin hall effect, Phys. Rev. Lett. 95 (2005) 146802 https://doi.org/10.1103/PhysRevLett.95.226801
[36] D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Quantum spin hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97 (2006) 036808 https://doi.org/10.1103/PhysRevLett.97.036808
[37] X. Xu, X. Guo, S. Mu, H. Zhang, J. Huang, A topological photonic crystal with ultra-wide dual bandwidth, Results in Optics 5 (2021) 100127 https://doi.org/10.1016/j.rio.2021.100127
[38] Y. Gao, J. Sun, N. Xu, Z. Jiang, Q. Hou, H. Song, M. Jin, C. Zhang, Manipulation of a topological beam splitter based on honeycomb photonic crystals, Optics Communications 483 (2021) 126646 https://doi.org/10.1016/j.optcom.2020.126646
[39] L. Wu, X. Hu, Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material, Phys. Rev. Lett. 114 (2015) 223901. https://doi.org/10.1103/PhysRevLett.114.223901
[40] X. Zhu, H. Wang, C. Xu, Topological transitions in continuously deformed photonic crystals, Phys. Rev. B 97 (2017) 085148 https://doi.org/10.1103/PhysRevB.97.085148
[41] Z. Jiang, Y. Gao, L. He, et al., Phys. Chem. Chem. Phys. 21 (2019) 11367. https://doi.org/10.1039/C9CP00789J
[42] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045
[43] D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82 (2010) 1959. https://doi.org/10.1103/RevModPhys.82.1959
[44] T. L. Hughes, R. G. Leigh, and O. Parrikar, Torsional anomalies, Hall viscosity, and bulk-boundary correspondence in topological states, Phys. Rev. D 88 (2013) 025040. https://doi.org/10.1103/PhysRevD.88.025040
[45] B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, and Y. F. Chen, Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals, Phys. Rev. Lett. 122 (2019) 233903. https://doi.org/10.1103/PhysRevLett.122.233903
[46] X. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, M. Chen, and J. W. Dong, Direct observation of corner states in second-order topological photonic crystal slabs, Phys. Rev. Lett. 122 (2019) 233902. https://doi.org/10.1103/PhysRevLett.122.233902
[47] B. Y. Xie, G. X. Su, H. F. Wang, F. Liu, L. Hu, S.-Y. Yu, P. Zhan, M.-H. Lu, Z. Wang, and Y. F. Chen, Higher-order quantum spin Hall effect in a photonic crystal, Nat. Commun. 11 (2020) 3768. https://doi.org/10.1038/s41467-020-17593-8
[48] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357 (2017) 61. https://doi.org/10.1126/science.aah6442
[49] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555 (2018) 346. https://doi.org/10.1038/nature25777
[50] Z. D. Song, Z. Fang, and C. Fang, (d−2)-dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119 (2017) 246402.
[51] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer, Second-order topological insulators and superconductors with an order-two crystalline symmetry, Phys. Rev. B 97 (2018) 205135. https://doi.org/10.1103/PhysRevB.97.205135
[52] M. Ezawa, Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices, Phys. Rev. Lett. 120 (2018) 026801. https://doi.org/10.1103/PhysRevLett.120.026801
[53] H. D. Xue, Y. H. Yang, F. Gao, Y. D. Chong, and B. L. Zhang, Acoustic higher-order topological insulator on a kagome lattice, Nat. Mater. 18, (2019) 108. https://doi.org/10.1038/s41563-018-0251-x
[54] M.S. Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, Observation of a phononic quadrupole topological insulator, Nature 555 (2018) 342. https://doi.org/10.1038/nature25156
[55] X. J. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. Y. Xie, M. H. Lu, Y. F. Chen, and J. H. Jiang, Second-order topology and multidimensional topological transitions in sonic crystals, Nat. Phys. 15 (2019) 582. https://doi.org/10.1038/s41567-019-0472-1
[56] M. Li, Y. Wang, M. Lu, and T. Sang, Two types of corner states in two-dimensional photonic topological insulators, J. Appl. Phys. 129 (2021) 063104. https://doi.org/10.1063/5.0039586
[57] M. Shaik, I.A. Motaleb, Investigation of the optical properties of PLD-grown Bi2Te3 and Sb2Te3, IEEE Int. Conf. Electro/Inf. Technol. (2013) 1-6.
[58] M. Hada, K. Norimatsu, S. Tanaka, S. Keskin, T. Tsuruta, K. Igarashi, Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements, J. Chem- Phys. 145 (2016) 024504. https://doi.org/10.1063/1.4955188
[59] G. Hao, X. Qi, Y. Liu, Z. Huang, H. Li, K. Huang, Ambipolar charge injection and transport of few-layer topological insulator Bi2Te3 and Bi2Se3 nanoplates, J. Appl. Phys. Am. Inst. Phys. AIP (2012) 114312. https://doi.org/10.1063/1.4729011
[60] S. Yazdani, M.T. Pettes, Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches, Nanotechnology 29 (2018). https://doi.org/10.1088/1361-6528/aad673
[61] M.T. Pettes, J. Maassen, I. Jo, M.S. Lundstrom, L. Shi, Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates, Nano Lett. 13 (2013) 5316-5322. https://doi.org/10.1021/nl402828s
[62] H. Goldsmid, Bismuth telluride, and its alloys as materials for thermoelectric generation, Materials (Basel). 7 (2014) 2577-2592. https://doi.org/10.3390/ma7042577
[63] I. Bejenari, V. Kantser, Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation, Phys. Rev. B – Condens. Matter Mater. Phys. 78 (2008) 115322. https://doi.org/10.1103/PhysRevB.78.115322
[64] I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz, G. Hautier, The thermoelectric properties of bismuth telluride, Adv. Electron. Mater. 5 (2019) 1800904. https://doi.org/10.1002/aelm.201800904
[65] J. Qiao, M.Y. Chuang, J.C. Lan, Y.Y. Lin, W.H. Sung, R. Fan, Two-photon absorption within layered Bi2Te3 topological insulators and the role of nonlinear transmittance therein, J. Mater. Chem. C. 7 (2019) 7027-7034. https://doi.org/10.1039/C9TC01885A
[66] L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, Broadband third order nonlinear optical responses of bismuth telluride nanosheets, Opt. Mater. Express. 6 (2016) 2244. https://doi.org/10.1364/OME.6.002244
[67] M. Molli, S. Parola, L.A. Avinash Chunduri, S. Aditha, V. Sai Muthukumar, T. Mimani Rattan, Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride, J. Solid State Chem. (2012) 85-89. https://doi.org/10.1016/j.jssc.2011.11.051
[68] J.L. Liu, H. Wang, X. Li, H. Chen, Z.K. Zhang, W.W. Pan, High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates, J. Alloy. Compd. 25 (2019) 656-664. https://doi.org/10.1016/j.jallcom.2019.05.299
[69] E.A. Aviles, M. Valdez, J. A. Torres, C.J. Torres, H. Guti’errez , C. Torres, Photo-induced structured waves by nanostructured topological insulator Bi2Te3, Optics & Laser Technology 140 (2021) 107015. https://doi.org/10.1016/j.optlastec.2021.107015
[70] M. Jewariya, M. Nagai, K. Tanaka, Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse, Phys. Rev. Lett. 105 (2010) 203003. https://doi.org/10.1103/PhysRevLett.105.203003
[71] Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, H. Xu, 1.06 µm Q switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Opt. Express 21 (2013) 29516-29522. https://doi.org/10.1364/OE.21.029516
[72] Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, J. Weng, Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength, IEEE J. Sel. Top. Quantum Electron. 20 (5) (2014) 1-8. https://doi.org/10.1109/JSTQE.2014.2305834
[73] C. Yu, Z. Chujun, H. Huihui, C. Shuqing, T. Pinghua, W. Zhiteng, L. Shunbin, Z. Han, W. Shuangchun, T. Dingyuan, Self-assembled topological insulator: Bi2Se3 the membrane as a passive q-switcher in an erbium-doped fiber laser, J. Lightwave Technol. 31 (17) (2013) 2857-2863. https://doi.org/10.1109/JLT.2013.2273493
[74] Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, Self-assembled topological insulator: Bi Se membrane as a passive Q-switcher in an erbium-doped fiber laser, J. Lightwave Technol. 31 (2013) 2857-2863. https://doi.org/10.1109/JLT.2013.2273493
[75] Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, 1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Opt. Express 21 (2013) 29516-29522. https://doi.org/10.1364/OE.21.029516
[76] Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 315-322. https://doi.org/10.1109/JSTQE.2013.2295196
[77] Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 1-8. https://doi.org/10.1109/JSTQE.2014.2305834
[78] W. Richter, H. Kohler, C.R. Becke, A Raman and far-infrared investigation of phonons in the rhombohedral V2-VI3 compounds bismuth tritelluride Bi2Te3, bismuth triselenide Bi2Se3, antimony tritelluride Sb2Te3, and bismuth telluride selenide (Bi2(Te1-xSex)3) (0 < x < 1), bismuth antimony telluride ((Bi1-ySby)2Te3) (0 < y < 1), Phys. Status Solidi B 84 (1977) 619-628. https://doi.org/10.1002/pssb.2220840226
[79] H. Haris, S.W. Harun, A.R. Muhammad, C. L. Anyi, S. J. Tan, F. Ahmad, R. M. Nor, N.R. Zulkepely, H. Arof, Passively Q-switched Erbium-doped and Ytterbium-doped fiber lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber, Optics & Laser Technology 88 (2017) 121-127 https://doi.org/10.1016/j.optlastec.2016.09.015
[80] Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, J. Weng, Passive Q-switching of Pr:LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber, Optics & Laser Technology 88 (2017) 275-279. https://doi.org/10.1016/j.optlastec.2016.09.026