Manganese Doped Topological Insulators

$30.00

Manganese Doped Topological Insulators

M.W. Yasin, S.S. Ali

When a topological insulator is incorporated with magnetism, the time-reversal symmetry (TRS) breaks. This chapter sums up the current research in Mn-doped topological insulators, mostly focusing on antiferromagnetic MnBi2Te4 and its family. Specific critical behavior of Mn-doped Bi2Te3 topological insulator reveals ferromagnetic ordering (to increase conductivity) of Mn spin at normal substitution. Moreover, due to intrinsic anti-state substitutional defect if a comparable amount of local moment is produced then calculated data is in favor of a spin glass state with polarization. Exotic phenomena like the magnetoelectric effect and dissipation less edge state occur in this material and to study MnBi2Se4 epitaxial thin films a scanning tunneling microscope (STM) is utilized. Steps between a screw dislocation and the van der Waals layer are manifested in the large-scale topographic image. In a small area at the edge Bi termination is occurred and Se termination is dominant at the surface, this termination is compared by examining step height, tunneling spectroscopy, and resolution image. Similarly, for analyzing Mn impurity in Bi2Se3 electron paramagnetic resonance is used and by implementing the vertical Bridgman method topological insulator is grown. Mn2+ configuration was found in conducting state of a host metal and Mn in high spin =5/2Mn^(2+). This assumption shows that energy level Mn^(2+) (d^5) is present the valence bad (VB) and energy level, Mn^(1+) (d^6) is located far way form energy gap.

Keywords
Dirac Point, Ferromagnetic, Quintuple Layer, Quantum Anomalous Hall Effect, Susceptibility and Photoemission Intensity

Published online 12/15/2023, 25 pages

Citation: M.W. Yasin, S.S. Ali, Manganese Doped Topological Insulators, Materials Research Foundations, Vol. 154, pp 95-119, 2024

DOI: https://doi.org/10.21741/9781644902851-6

Part of the book on Topological Insulators

References
[1] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5 (2009) 438-442. https://doi.org/10.1038/nphys1270
[2] M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045
[3] A. Wolos, A. Drabinska, J. Borysiuk, K. Sobczak, M. Kaminska, A. Hruban, S. G. Strzelecka, A. Materna, M. Piersa, M. Romaniec, High-spin configuration of Mn in Bi2Se3 three-dimensional topological insulator, J. Magn. Magn. Mater. 419 (2016) 301-308. https://doi.org/10.1016/j.jmmm.2016.06.017
[4] V. Sakhin, E. Kukovitskii, N. Garifyanov, R. Khasanov, Y. Talanov, G. Teitelbaum, Local magnetic moments in the topological insulators, J. Magn. Magn. Mater. 459 (2018) 290-294. https://doi.org/10.1016/j.jmmm.2017.10.047
[5] V. Maurya, C. Dong, C. Chen, K. Asokan, S. Patnaik, High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3, J. Magn. Magn. Mater. 456 (2018) 1-5. https://doi.org/10.1016/j.jmmm.2018.01.096
[6] M. Nakahara, Geometry, Topology and Physics, CRC press, 2003. https://doi.org/10.1201/9781420056945
[7] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5 (2009) 438-442. https://doi.org/10.1038/nphys1270
[8] G. Checkelsky, J. Ye, Y. Onose, Y. Iwasa, Y. Tokura, Dirac-fermion-mediated ferromagnetism in a topological insulator, Nat. Phys. 8 (2012) 729-733. https://doi.org/10.1038/nphys2388
[9] H. W. Lee, B. S. Kim, S. Choi, J. Choi, J. Song, S. Cho, Mn-doped V2VI3 semiconductors: Single crystal growth and magnetic properties, J. Appl. Phys. 97 (2005) 10D324. https://doi.org/10.1063/1.1854451
[10] F. T. Huang, M. W. Chu, H. Kung, W. Lee, R. Sankar, S. C. Liou, K. Wu, Y. Kuo, F. Chou, Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3, Phys. Rev. B 86 (2012) 081104. https://doi.org/10.1103/PhysRevB.86.081104
[11] P. Janicek, C. Drasar, P. Lostak, J. Vejpravova, V. Sechovsky, Transport, magnetic, optical and thermodynamic properties of Bi2−xMnxSe3 single crystals, Physica B: Condens. Matter 403 (2008) 3553-3558. https://doi.org/10.1016/j.physb.2008.05.025
[12] R. S. Silva, A. J. Gualdi, F. L. Zabotto, N. F. Cano, A. C. A. Silva, N. O. Dantas, Weak ferromagnetism in Mn2+ doped Bi2Te3 nanocrystals grown in glass matrix, J. Alloys Compd. 708 (2017) 619-622. https://doi.org/10.1016/j.jallcom.2017.03.066
[13] R. Silva, H. Mikhail, R. Pavani, N. Cano, A. Silva, N. Dantas, Synthesis of diluted magnetic semiconductor Bi2−xMnxTe3 nanocrystals in a host glass matrix, J. Alloys Compd. 648 (2015) 778-782. https://doi.org/10.1016/j.jallcom.2015.07.045
[14] T. Collins, Image J for microscopy, Biotechniques 43 (2007) S25-S30. https://doi.org/10.2144/000112517
[15] H. Zhang, W. Yang, Y. Wang, X. Xu, Tunable topological states in layered magnetic materials of MnSb2Te4, MnBi2Se4, and MnSb2Se4, Phys. Rev. B 103 (2021) 094433.
[16] S. Chowdhury, K. F. Garrity, F. Tavazza, Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4, NPJ Comput. Mater. 5 (2019) 33. https://doi.org/10.1038/s41524-019-0168-1
[17] R. C. Walko, T. Zhu, A. J. Bishop, R. K. Kawakami, J. A. Gupta, Scanning tunneling microscopy study of the antiferromagnetic topological insulator MnBi2Se4, Physica E, Low Dimens. Syst. Nanostruct. 143 (2022) 115391. https://doi.org/10.1016/j.physe.2022.115391
[18] C. Nowka, M. Gellesch, J. E. H. Borrero, S. Partzsch, C. Wuttke, F. Steckel, C. Hess, A. U. Wolter, L. T. C. Bohorquez, B. Buchner, Chemical vapor transport and characterization of MnBi2Se4, J. Cryst. Growth 459 (2017) 81-86. https://doi.org/10.1016/j.jcrysgro.2016.11.090
[19] J. Q. Yan, Z. Huang, W. Wu, A. F. May, Vapor transport growth of MnBi2Te4 and related compounds, J. Alloys Compd. 906 (2022) 164327. https://doi.org/10.1016/j.jallcom.2022.164327
[20] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science 367 (2020) 895-900. https://doi.org/10.1126/science.aax8156
[21] Y. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. Checkelsky, L. Wray, D. Hsieh, Y. Xia, S.Y. Xu, Development of ferromagnetism in the doped topological insulator Bi(2−x)MnxTe3, Phys. Rev. B 81 (2010) 195203. https://doi.org/10.1103/PhysRevB.81.195203
[22] V. Sakhin, E. Kukovitskii, N. Garifyanov, Y. Talanov, G. Teitelbaum, Inhomogeneous state of the Bi2Te3 doped with manganese, J. Supercond. Nov. Magn. 30 (2017) 63-67. https://doi.org/10.1007/s10948-016-3801-y
[23] S. Zimmermann, F. Steckel, C. Hess, H. Ji, Y. S. Hor, R. J. Cava, B. Buchner, V. Kataev, Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2Te3, Phys. Rev. B 94 (2016) 125205. https://doi.org/10.1103/PhysRevB.94.125205
[24] V. Sakhin, E. Kukovitskii, N. Garifyanov, R. Khasanov, Y. Talanov, G. Teitelbaum, Local magnetic moments in the topological insulators, J. Magn. Magn. Mater. 459 (2018) 290-294. https://doi.org/10.1016/j.jmmm.2017.10.047
[25] J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, Y. Xu, Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials, Sci. Adv. 5 (2019) eaaw5685. https://doi.org/10.1126/sciadv.aaw5685
[26] P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, J. Wang, Intrinsic magnetic topological insulators, The Innovation 2 (2021) 100098. https://doi.org/10.1016/j.xinn.2021.100098
[27] H. Fu, C. X. Liu, B. Yan, Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure, Sci. Adv. 6 (2020) 0948. https://doi.org/10.1126/sciadv.aaz0948
[28] Z. Jiang, J. Liu, Z. Liu, D. Shen, A review of angle-resolved photoemission spectroscopy study on topological magnetic material family of MnBi2Te4, Electron. Struct. (2022). https://doi.org/10.1088/2516-1075/acab47
[29] C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling, Nat. Commun. 11 (2020) 97. https://doi.org/10.1038/s41467-019-13814-x
[30] C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H. Li, S. W. Lian, A. G. Linn, H. J. Tien, C. Y. Huang, P. Reddy, Realization of an intrinsic, ferromagnetic axion insulator in MnBi8Te13, arXiv preprint arXiv.1910.(2019)12847
[31] W. Pinyuan, J. Ge, L. Jiaheng, L. Yanzhao, X. Yong, and W. Jian, Intrinsic magnetic topological insulators, The Innovation 2 (2021) 100098. https://doi.org/10.1016/j.xinn.2021.100098
[32] J. Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, B. C. Sales, Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4, Phys. Rev. B 100 (2019) 104409. https://doi.org/10.1103/PhysRevB.100.104409
[33] T. Murakami, Y. Nambu, T. Koretsune, G. Xiangyu, T. Yamamoto, C. M. Brown, H. Kageyama, Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state, Phys. Rev. B 100 (2019) 195103. https://doi.org/10.1103/PhysRevB.100.195103
[34] B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang, P. Wang, B. Wei, Y. Zhang, Z. Zuo, Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes, Nat. Commun. 10 (2019) 4469. https://doi.org/10.1038/s41467-019-12485-y
[35] D. Rienks, L. Emile, W. Sebastian, J. S. Barriga, C. Ondrej, S. M. Partha, J. Ruzicka, N. Andreas, Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576 (2019) 423-428. https://doi.org/10.1038/s41586-019-1826-7
[36] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X 9 (2019) 041040. https://doi.org/10.1103/PhysRevX.9.041040
[37] R. J. Hao, Y. Z. Liu, H. Wang, J. W. Luo, J. H. Li, H. Li, Y. Wu, Y. Xu, J. Wang, Detection of magnetic gap in topological surface states of MnBi2Te4, Chin. Phys. Lett. 38 (2021) 107404. https://doi.org/10.1088/0256-307X/38/10/107404
[38] A. Shikin, T. Makarova, A. Eryzhenkov, D. Y. Usachov, D. Estyunin, D. Glazkova, I. Klimovskikh, A. Rybkin, A. Tarasov, Routes for the topological surface state energy gap modulation in antiferromagnetic MnBi2Te4, Physica B: Conden. Matter 649 (2023) 414443. https://doi.org/10.1016/j.physb.2022.414443
[39] M. Garnica, M M. Otrokov, P.C. Aguilar, I.I. Klimovskikh, D. Estyunin, Z.S. Aliev, I. R. Amiraslanov, N.A. Abdullayev, V.N. Zverev, M. Babanly, Native point defects and their implications for the Dirac point gap at MnBi2Te4 (0001), NPJ Quantum Mater 7 (2022) 7. https://doi.org/10.1038/s41535-021-00414-6
[40] P. Kurz, F. Forster, L. Nordstrom, G. Bihlmayer, S. Blugel, Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method, Phys. Rev. B 69 (2004) 024415. https://doi.org/10.1103/PhysRevB.69.024415
[41] D. Wortmann, P. Kurz, S. Heinze, K. Hirai, G. Bihlmayer, S. Blugel, Resolving noncollinear magnetism by spin-polarized scanning tunneling microscopy, J. Magn. Magn. Mater. 240 (2002) 57-63. https://doi.org/10.1016/S0304-8853(01)00738-7
[42] L. Xu, Y. Mao, H. Wang, J. Li, Y. Chen, Y. Xia, Y. Li, D. Pei, J. Zhang, H. Zheng, Persistent surface states with diminishing gap in MnBi2Te4Bi2Te3 superlattice antiferromagnetic topological insulator, Science Bulletin 65 (2020) 2086-2093. https://doi.org/10.1016/j.scib.2020.07.032
[43] V. Maurya, P. Neha, P. Srivastava, S. Patnaik, Superconductivity by Sr intercalation in the layered topological insulator Bi2Se3, Phys. Rev. B 92 (2015) 020506.
[44] J. S. Dyck, P. Hajek, P. Lostak, C. Uher, Diluted magnetic semiconductors based on Sb2−xVxTe3 (0.01<~ x<~ 0.03), Phys. Rev. B 65 (2002) 115212.