Topological Superconductor
M. Rizwan, H. Hameed, H.M. Naeem Ullah, A. Ayub
In the scientific community, in topological materials superconductivity has attracted scientists significantly as Majorana fermions as observed in these materials perceived from zero-biased conduction peak, quantized thermal conductivity, and AJE (Anomalous Josephson Effect). In this chapter recent advancements in the field of TSCs have been discussed. Role Majorana fermions in TSCs has been discussed briefly. Few materials that show topological superconductivity under specific conditions have also been considered. Unconventional doping-based sed superconductors showed topological superconductivity having topological invariant states in the form of bulk from under certain conditions.
Keywords
Superconductors, Majorana Fermions, Quantum Spin, Spin Current, Nematicity, Josephson Effect
Published online 12/15/2023, 13 pages
Citation: M. Rizwan, H. Hameed, H.M. Naeem Ullah, A. Ayub, Topological Superconductor, Materials Research Foundations, Vol. 154, pp 82-94, 2024
DOI: https://doi.org/10.21741/9781644902851-5
Part of the book on Topological Insulators
References
[1] X.-L. Qi, S. Zhang, Topological insulators and superconductors, Reviews of Modern Physics 83 (2011) 1057. https://doi.org/10.1103/RevModPhys.83.1057
[2] M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Reviews of Modern Physics 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045
[3] K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Physical Review Letters 45 (1980) 494-497. https://doi.org/10.1103/PhysRevLett.45.494
[4] S. Zhang, Topological states of quantum matter, Physics 1 (2008) 6. https://doi.org/10.1103/Physics.1.6
[5] C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene, Physical Review Letters 95 (2005) 226801. https://doi.org/10.1103/PhysRevLett.95.226801
[6] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318 (2007) 766-770. https://doi.org/10.1126/science.1148047
[7] B.A. Bernevig, S.C. Zhang, Quantum spin Hall effect, Physical Review Letters 96 (2006) 106802. https://doi.org/10.1103/PhysRevLett.96.106802
[8] A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang, Nonlocal transport in the quantum spin Hall state, Science 325 (2009) 294-297. https://doi.org/10.1126/science.1174736
[9] C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian anyons and topological quantum computation, Reviews of Modern Physics 80 (2008) 1083-1159. https://doi.org/10.1103/RevModPhys.80.1083
[10] M. Sato, Y.J.R.o.P.i.P. Ando, Topological superconductors: a review, 80 (2017) 076501. https://doi.org/10.1088/1361-6633/aa6ac7
[11] Y. Ando, L.J. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annual Review of Condensed Matter Physics 6 (2015) 361-381. https://doi.org/10.1146/annurev-conmatphys-031214-014501
[12] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Mao, Y. Mori, Y.J.N. Maeno, Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift, Nature 396 (1998) 658-660. https://doi.org/10.1038/25315
[13] L. Fu, E.J. Berg, Odd-parity topological superconductors: Theory and application to CuxBi 2Se3, Nature 105 (2010) 097001. https://doi.org/10.1103/PhysRevLett.105.097001
[14] P. Sharma, N. Karn, V.S. Awana, Technology, A comprehensive review on topological superconducting materials and interfaces, arXiv:2204.12107 (2022). https://doi.org/10.1088/1361-6668/ac6987
[15] H.H. Sun, J.F. Jia, Majorana zero mode in the vortex of an artificial topological superconductor, Science China Physics, Mechanics & Astronomy 60 (2017) 057401. https://doi.org/10.1007/s11433-017-9011-7
[16] L. Fu, C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Physical Review Letters 100 (2008) 096407. https://doi.org/10.1103/PhysRevLett.100.096407
[17] J.D. Sau, R.M. Lutchyn, S. Tewari, S.D. Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Physical Review Letters 104 (2010) 040502. https://doi.org/10.1103/PhysRevLett.104.040502
[18] K. Matsubayashi, T. Terai, J. Zhou, Y.J. Uwatoko, Superconductivity in the topological insulator Bi2Te3 under hydrostatic pressure, Physical Review B 90 (2014) 125126. https://doi.org/10.1103/PhysRevB.90.125126
[19] M. Sato, Y. Ando, Topological superconductors: A review, Reports on Progress in Physics 80 (2017) 076501. https://doi.org/10.1088/1361-6633/aa6ac7
[20] T. Angsachon, R. Dhanawittayapol, K. Kritsarunont, S.N. Manida, A free solution to the Dirac equation in R-spacetime, Journal of Physics: Conference Series 1380 (2019) 012090. https://doi.org/10.1088/1742-6596/1380/1/012090
[21] F.J.N.P. Wilczek, Majorana returns, Nature Physics 5 (2009) 614-618. https://doi.org/10.1038/nphys1380
[22] M.M. Sharma, P. Sharma, N.K. Karn, V.P.S. Awana, Comprehensive review on topological superconducting materials and interfaces, Superconductor Science and Technology 35 (2022) 083003. https://doi.org/10.1088/1361-6668/ac6987
[23] Z. Wang, P. Zhang, G. Xu, L.K. Zeng, H. Miao, X. Xu, T. Qian, H. Weng, P. Richard, A.V. Fedorov, H. Ding, X. Dai, Z. Fang, Topological nature of the FeSe0.5Te0.5 superconductor, Physical Review B 92 (2015) 115119. https://doi.org/10.1103/PhysRevB.92.115119
[24] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K, Journal of the American Chemical Society 130 (2008) 3296. https://doi.org/10.1021/ja800073m
[25] D. Li, Y. Liu, Z. Lu, P. Li, Y. Zhang, S. Ma, J. Liu, J. Lu, H. Zhang, G. Liu, F. Zhou, X. Dong, Z. Zhao, Quasi-two-dimensional nature of high-Tc superconductivity in iron-based (Li, Fe)OHFeSe, Chinese Physics Letters 39 (2022) 127402. https://doi.org/10.1088/0256-307X/39/12/127402
[26] Z.T. Liu, X. Xing, M.Y. Li, W. Zhou, Y. Sun, C. Fan, H.F. Yang, J.S. Liu, Q. Yao, W. Li, Z.X. Shi, D. Shen, Z.J.a.S. Wang, Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2, Applied Physics Letters 109 (2016) 042602. https://doi.org/10.1063/1.4960164
[27] I.A. Nekrasov, N.S. Pavlov, M.V. Sadovskii, Electronic structure of FeSe monolayer superconductors: Shallow bands and correlations, Journal of Experimental and Theoretical Physics 126 (2018) 485. https://doi.org/10.1134/S1063776118040106
[28] S. Geller, G.J. Hull Jr, Superconductivity of intermetallic compounds with NaCl-type and related structures, Physical Reviwe Letters 13 (1964) 127. https://doi.org/10.1103/PhysRevLett.13.127
[29] C.A. Marques, M.J. Neat, C.M. Yim, M.D. Watson, L.C. Rhodes, C. Heil, K.S. Pervakov, V.A. Vlasenko, V.M. Pudalov, A.V. Muratov, T.K. Kim, P. Wahl, Electronic structure and superconductivity of the non-centrosymmetric Sn4As3, New Journal of Physics 22 (2020) 063049. https://doi.org/10.1088/1367-2630/ab890a
[30] A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Physical Review B 78 (2008) 195125. https://doi.org/10.1103/PhysRevB.78.195125
[31] S.B. Chung, J. Horowitz, X.L. Qi, Time-reversal anomaly and Josephson effect in time-reversal-invariant topological superconductors, Physical Review B 88 (2013) 214514. https://doi.org/10.1103/PhysRevB.88.214514
[32] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Reports on Progress in Physics 75 (2012) 076501. https://doi.org/10.1088/0034-4885/75/7/076501
[33] K. Matano, M. Kriener, K. Segawa, Y. Ando, G.Q. Zheng, Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3, Nature Physics 12 (2016) 852. https://doi.org/10.1038/nphys3781
[34] S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, Y.J.N.P. Maeno, Thermodynamic evidence for nematic superconductivity in CuxBi2Se3, Nature Physics 13 (2017) 123. https://doi.org/10.1038/nphys3907
[35] T. Le, Y. Sun, H.K. Jin, L. Che, L. Yin, J. Li, G. Pang, C. Xu, L. Zhao, S. Kittaka, T. Sakakibara, K. Machida, R. Sankar, H. Yuan, G. Chen, X. Xu, S. Li, Y. Zhou, X. Lu, Evidence for nematic superconductivity of topological surface states in PbTaSe2, Science Bulletin 65 (2020) 1349. https://doi.org/10.1016/j.scib.2020.04.039