Magnetic Topological Insulator

$30.00

Magnetic Topological Insulator

M. Rizwan, H. Hameed, A. Ayub, H.M. Naeem Ullah

In condensed matter physics, global band topology and its importance have been recognized unambiguously such as the discovery of topological insulators (TIs). Massless dispersion having spin momentum locking has been possessed by 3D topological insulators because of their bulk band topology at the surface. In Dirac band dispersion the exchange gap formation is caused by broken TRS or by the beginning of spontaneous magnetization, even though the time-reversal invariable system is the origin of 3D TIs. In such magnetic TIs, at zero magnetic fields in the exchange gap, the appearance of quantum hall effect (QHE) is the result of Fermi level tuning, and QHE at zero magnetic fields is the quantum anomalous hall effect (QAHE). In this chapter, the experimental realization and basic concepts of magnetic TIs have been discussed. The origin of magnetization in topological insulators is the main idea, which leads to QHE, and QAHE and different materials have also been discussed.

Keywords
Antiferromagnetic Phase, Quantum Anomalous Hall Effect, Topological Insulators, Ferromagnetic Phase, Intrinsic Magnetic Insulators, Integer Quantum Hall Effect (QHE)

Published online 12/15/2023, 21 pages

Citation: M. Rizwan, H. Hameed, A. Ayub, H.M. Naeem Ullah, Magnetic Topological Insulator, Materials Research Foundations, Vol. 154, pp 61-81, 2024

DOI: https://doi.org/10.21741/9781644902851-4

Part of the book on Topological Insulators

References
[1] Y.J. Tokura, Critical features of colossal magnetoresistive manganites, Reports on Progress in Physics 69 (2006) 797. https://doi.org/10.1088/0034-4885/69/3/R06
[2] S.G. Stewart, Heavy-fermion systems, Reviews of Modern Physics 56 (1984) 755. https://doi.org/10.1103/RevModPhys.56.755
[3] P.A. Lee, N. Nagaosa, X.G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Reviews of Modern Physics 78 (2006) 17-85. https://doi.org/10.1103/RevModPhys.78.17
[4] A. Fert, Nobel lecture: Origin, development, and future of spintronics, Reviews of Modern Physics 80 (2008) 1517-1530. https://doi.org/10.1103/RevModPhys.80.1517
[5] M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Reviews of Modern Physics 82 (2010) 3045-3067. https://doi.org/10.1103/RevModPhys.82.3045
[6] X.L. Qi, Zhang, Topological Insulators and superconductors 83 (2011) 1057. https://doi.org/10.1103/RevModPhys.83.1057
[7] N. Nagaosa, Y.J.N.n. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotechnology 8 (2013) 899-911. https://doi.org/10.1038/nnano.2013.243
[8] K.V. Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters 45 (1980) 494-497. https://doi.org/10.1103/PhysRevLett.45.494
[9] D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters 49 (1982) 405-408. https://doi.org/10.1103/PhysRevLett.49.405
[10] M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Annals of Physics 160 (1985) 343-354. https://doi.org/10.1016/0003-4916(85)90148-4
[11] C.-T. Ho, D.-W. Wang, Robust identification of topological phase transition by self-supervised machine learning approach, New Journal of Physics 23 (2021) 083021. https://doi.org/10.1088/1367-2630/ac1709
[12] K. Ohgushi, S. Murakami, N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagom\’e lattice: Chiral spin state based on a ferromagnet, Physical Review B 62 (2000) R6065-R6068. https://doi.org/10.1103/PhysRevB.62.R6065
[13] P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, J.J.T.I. Wang, Intrinsic magnetic topological insulators, 2 (2021) 100098. https://doi.org/10.1016/j.xinn.2021.100098
[14] C.L. Kane, E.J.J.P.r.l. Mele, Quantum spin Hall effect in graphene, 95 (2005) 226801. https://doi.org/10.1103/PhysRevLett.95.226801
[15] Y. Tokura, K. Yasuda, A. Tsukazaki, Magnetic topological insulators, Nature Reviews Physics 1 (2019) 126-143. https://doi.org/10.1038/s42254-018-0011-5
[16] Y. Tokura, K. Yasuda, A.J.N.R.P. Tsukazaki, Magnetic topological insulators, 1 (2019) 126-143. https://doi.org/10.1038/s42254-018-0011-5
[17] Y.J.J.o.t.P.S.o.J. Ando, Topological insulator materials, 82 (2013) 102001. https://doi.org/10.7566/JPSJ.82.102001
[18] R.J. Cava, H. Ji, M.K. Fuccillo, Q.D. Gibson, Y.S. Hor, Crystal structure and chemistry of topological insulators, Journal of Materials Chemistry C 1 (2013) 3176-3189. https://doi.org/10.1039/c3tc30186a
[19] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Physics 5 (2009) 438-442. https://doi.org/10.1038/nphys1270
[20] M.Z. Hasan, C.L.J.R.o.m.p. Kane, Colloquium: topological insulators, 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045
[21] R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X. Dai, Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science (New York, N.Y.) 329 (2010) 61-64. https://doi.org/10.1126/science.1187485
[22] R.R. Biswas, A.V. Balatsky, Impurity-induced states on the surface of three-dimensional topological insulators, Physical Review B 81 (2010) 233405. https://doi.org/10.1103/PhysRevB.81.233405
[23] G. Rosenberg, M. Franz, Surface magnetic ordering in topological insulators with bulk magnetic dopants, Physical Review B 85 (2012) 195119. https://doi.org/10.1103/PhysRevB.85.195119
[24] J.-M. Zhang, W. Zhu, Y. Zhang, D. Xiao, Y. Yao, Tailoring Magnetic Doping in the Topological Insulator Bi2Se3, Physical Review Letters 109 (2012) 266405. https://doi.org/10.1103/PhysRevLett.109.266405
[25] Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, S.-C. Zhang, Magnetic Impurities on the Surface of a Topological Insulator, Physical Review Letters 102 (2009) 156603. https://doi.org/10.1103/PhysRevLett.102.156603
[26] D.A. Abanin, D.A. Pesin, Ordering of Magnetic Impurities and Tunable Electronic Properties of Topological Insulators, Physical Review Letters 106 (2011) 136802. https://doi.org/10.1103/PhysRevLett.106.136802
[27] C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.C. Zhang, K. He, Y. Wang, L. Lu, X.C. Ma, Q.K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science (New York, N.Y.) 340 (2013) 167-170. https://doi.org/10.1126/science.1234414
[28] C.Z. Chang, W. Zhao, D.Y. Kim, H. Zhang, B.A. Assaf, D. Heiman, S.C. Zhang, C. Liu, M.H. Chan, J.S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nature materials 14 (2015) 473-477. https://doi.org/10.1038/nmat4204
[29] W. Ning, Z.J.A.M. Mao, Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals, 8 (2020) 090701. https://doi.org/10.1063/5.0015328
[30] P. Wei, F. Katmis, B.A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, J.S. Moodera, Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators, Physical Review Letters 110 (2013) 186807. https://doi.org/10.1103/PhysRevLett.110.186807
[31] H.K. Singh, I. Samathrakis, N.M. Fortunato, J. Zemen, C. Shen, O. Gutfleisch, H. Zhang, Multifunctional antiperovskites driven by strong magnetostructural coupling, npj Computational Materials 7 (2021) 98. https://doi.org/10.1038/s41524-021-00566-w
[32] A.J.P.r.l. Burkov, Anomalous Hall effect in Weyl metals, 113 (2014) 187202. https://doi.org/10.1103/PhysRevLett.113.187202
[33] X. Wan, A.M. Turner, A. Vishwanath, S.Y.J.P.R.B. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, 83 (2011) 205101. https://doi.org/10.1103/PhysRevB.83.205101
[34] G. Xu, H. Weng, Z. Wang, X. Dai, Z.J.P.r.l. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr 2 Se 4, 107 (2011) 186806. https://doi.org/10.1103/PhysRevLett.107.186806
[35] M.M. Otrokov, I.P. Rusinov, M. Blanco-Rey, M. Hoffmann, A.Y. Vyazovskaya, S.V. Eremeev, A. Ernst, P.M. Echenique, A. Arnau, E.V. Chulkov, Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet ${\mathrm{MnBi}}_{2}{\mathrm{Te}}_{4}$ Films, Physical Review Letters 122 (2019) 107202. https://doi.org/10.1103/PhysRevLett.122.107202
[36] M.M. Otrokov, Klimovskikh, II, H. Bentmann, D. Estyunin, A. Zeugner, Z.S. Aliev, S. Gaß, A.U.B. Wolter, A.V. Koroleva, A.M. Shikin, M. Blanco-Rey, M. Hoffmann, I.P. Rusinov, A.Y. Vyazovskaya, S.V. Eremeev, Y.M. Koroteev, V.M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I.R. Amiraslanov, M.B. Babanly, N.T. Mamedov, N.A. Abdullayev, V.N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E.F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R.C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C.H. Min, S. Moser, T.R.F. Peixoto, F. Reinert, A. Ernst, P.M. Echenique, A. Isaeva, E.V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576 (2019) 416-422. https://doi.org/10.1038/s41586-019-1840-9
[37] K.S. Burch, D. Mandrus, J.G. Park, Magnetism in two-dimensional van der Waals materials, Nature 563 (2018) 47-52. https://doi.org/10.1038/s41586-018-0631-z
[38] P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, J. Wang, Intrinsic magnetic topological insulators, The Innovation 2 (2021) 100098. https://doi.org/10.1016/j.xinn.2021.100098
[39] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang, Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect, Physical Review Letters 122 (2019) 206401. https://doi.org/10.1103/PhysRevLett.122.206401
[40] L. Ding, J. Koo, L. Xu, X. Li, X. Lu, L. Zhao, Q. Wang, Q. Yin, H. Lei, B. Yan, Z. Zhu, K. Behnia, Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal, Physical Review X 9 (2019) 041061. https://doi.org/10.1103/PhysRevX.9.041061
[41] E. Liu, Y. Sun, N. Kumar, L. Müchler, A. Sun, L. Jiao, S.Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S.T.B. Goennenwein, C. Felser, Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal, Nat Phys 14 (2018) 1125-1131. https://doi.org/10.1038/s41567-018-0234-5
[42] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co(3)Sn(2)S(2) with magnetic Weyl fermions, Nature communications 9 (2018) 3681. https://doi.org/10.1038/s41467-018-06088-2
[43] J.Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K.Y. Chen, J.G. Cheng, W. Wu, D. Vaknin, B.C. Sales, R.J. McQueeney, Crystal growth and magnetic structure of MnBi2Te4, Physical Review Materials 3 (2019) 064202. https://doi.org/10.1103/PhysRevMaterials.3.064202
[44] J. Li, Y. Li, S. Du, Z. Wang, B.L. Gu, S.C. Zhang, K. He, W. Duan, Y. Xu, Intrinsic magnetic topological insulators in van der Waals layered MnBi(2)Te(4)-family materials, Science advances 5 (2019) eaaw5685. https://doi.org/10.1126/sciadv.aaw5685
[45] E.H. Hall, XVIII. On the “Rotational Coefficient” in nickel and cobalt, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12 (1881) 157-172. https://doi.org/10.1080/14786448108627086
[46] F.D.M.J.P.r.l. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the” parity anomaly”, 61 (1988) 2015. https://doi.org/10.1103/PhysRevLett.61.2015
[47] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science (New York, N.Y.) 318 (2007) 766-770. https://doi.org/10.1126/science.1148047
[48] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C.J.P.r.l. Zhang, Quantum anomalous Hall effect in Hg 1− y Mn y Te quantum wells, 101 (2008) 146802. https://doi.org/10.1103/PhysRevLett.101.146802
[49] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, Z.J.s. Fang, Quantized anomalous Hall effect in magnetic topological insulators, 329 (2010) 61-64. https://doi.org/10.1126/science.1187485
[50] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, K.L. Wang, Magnetic topological insulators and quantum anomalous hall effect, Solid State Communications 215-216 (2015) 34-53. https://doi.org/10.1016/j.ssc.2014.10.022
[51] H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, S.-Q.J.P.r.B. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, 81 (2010) 115407. https://doi.org/10.1103/PhysRevB.81.115407
[52] S. Datta, Electronic transport in mesoscopic systems, Cambridge university press1997.
[53] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, K.L.J.S.S.C. Wang, Magnetic topological insulators and quantum anomalous hall effect, 215 (2015) 34-53. https://doi.org/10.1016/j.ssc.2014.10.022
[54] L. Du, I. Knez, G.J. Sullivan, R.-R.J.B.o.t.A.P.S. Du, Observation of Quantum Spin Hall States in InAs/GaSb Bilayers under Broken Time-Reversal Symmetry, 2014 (2013).
[55] A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang, Nonlocal transport in the quantum spin Hall state, Science (New York, N.Y.) 325 (2009) 294-297. https://doi.org/10.1126/science.1174736
[56] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, Q.-K. Xue, Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator, 340 (2013) 167-170. https://doi.org/10.1126/science.1234414
[57] Transport properties of topological insulators films and nanowires, Chinese Physics B 22 (2013) 067302. https://doi.org/10.1088/1674-1056/22/6/067302
[58] X. Kou, L. He, M. Lang, Y. Fan, K. Wong, Y. Jiang, T. Nie, W. Jiang, P. Upadhyaya, Z. Xing, Y. Wang, F. Xiu, R.N. Schwartz, K.L. Wang, Manipulating Surface-Related Ferromagnetism in Modulation-Doped Topological Insulators, Nano Letters 13 (2013) 4587-4593. https://doi.org/10.1021/nl4020638